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The Building Blocks of Thought is a long book, presenting what may be the most 
sophisticated and sustained defense of concept nativism currently available on the 
market. As commi<ed nativists ourselves, we find it to be an important contribution that 
should serve as a reference point for decades to come. However, given the stated aim of 
providing a sophisticated and sustained defense of concept nativism, readers may be 
surprised to find that Laurence and Margolis (henceforth L&M) remain remarkably non-
commi<al on the question of which concepts, if any, are innately hardwired. After a brief 
overview of relevant issues, we focus on number concepts – a case study that appears 
several times throughout the book – to clarify in what sense the authors might take these 
concepts to be innate. We find that while L&M appear to vacillate between two distinct, 
yet comparatively modest brands of nativism about number concepts, they might do 
be<er to endorse a third which they have so far neglected to seriously consider. 

1. How L&M understand concept nativism 

L&M’s reluctance to commit on the question of which human concepts, specifically, are 
innately hardwired is not an oversight. A key thesis of their book is that focusing on 
questions like this only serves to artificially narrow and simplify the nativist position. In 
the end, they propose that nativists can rest content with the view that concept acquisition 
is structured by innate mechanisms of an appropriate variety, irrespective of whether the 
associated concepts are, themselves, innately hardwired.  

On L&M’s view, concept nativism is thus consistent with a view on which the relevant 
concepts are learned, provided that this learning is facilitated by the right kinds of 
mechanism. Such nativism holds merely that conceptual development results from the 
operations of myriad innate, domain specific mechanisms, each functioning to enable and 
constrain the acquisition of concepts in their domain – for example, mental state concepts 
might be acquired from dedicated theory of mind mechanisms, animal concepts from 
domain-specific folk biology mechanisms, and so on. The contrasting, empiricist position 
holds that concepts are acquired by way of domain general learning mechanisms, such that 
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concepts in one domain (BELIEF, DESIRE) can generally be learned via the same general-
purpose mechanisms as those in others (DOG, CAT).   

Much helpful ink is spilled to make this view more precise. An important idea that L&M 
introduce is that of an acquisition base: the collection of psychological structures which are 
psychologically primitive in the sense of not having been acquired via learning or any other 
psychological process. An organism’s acquisition base comprises its innate psychological 
resources, irrespective of whether they are present at birth, wri<en in their genetic code, 
or dependent in some way upon interaction with the environment (e.g., Samuels 2002; 
2004). To make sense of why, for example, animals but not rocks learn anything at all, both 
nativists and empiricists must posit an acquisition base of some sort; what differentiates 
the empiricist and the nativist is just in what they expect this acquisition base to include. 
L&M’s nativist expects it to contain myriad special purpose mechanisms, each directed 
at some proprietary domain; the (hardline) empiricist expects it to contain merely basic 
sensory capacities plus a domain-general capacity for learning.   

Distinguishing the acquisition base in this way admits of a spectrum of views. One can 
be more or less nativist in virtue of positing more or fewer special purpose mechanisms, or 
by positing special purpose mechanisms directed at narrower or broader conceptual 
domains. L&M’s point is just that nativists needn’t deny that concepts are learned 
through experience: concept nativism obtains for a given domain provided that (a) the 
relevant concepts are indeed part of the organism’s innate acquisition base, or (b) they 
are learned/acquired via learning mechanisms therein that are specifically directed at the 
relevant domain.  

Some might question whether option (b) truly deserves to be described as concept nativist. 
In what follows, we are happy to accept L&M’s framing of the issue, noting that it 
correctly distances classical empiricism from nativist-leaning theorists like those which 
posit domain-specific systems of core knowledge. Nevertheless, we detect at least two 
complications when applying the proposal to debates between L&M and their opponents.  

One complication is that the idea of being psychologically primitive – and hence proprietary 
to the acquisition base – is vexed, owing to disagreements over how we should draw a 
distinction between psychology and other levels of scientific explanation (Fodor 1974; 
Samuels 2004: 139). Pending a satisfactory characterization of this distinction, nativists of 
the ilk suggested by L&M risk talking past their opponents.  
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To illustrate, suppose we follow Fodor and Pylyshyn (1988) in holding that neural 
networks fail to provide plausible accounts of human cognition; at most, such models 
offer insight into how a classical cognitive architecture is implemented at an autonomous, 
sub-psychological level of (neural) analysis. If so, this problematizes the idea that a 
psychologically primitive acquisition base is innate in the ways that contemporary 
empiricists, who increasingly avail themselves of advances in neural network 
architectures, will reject. That is, card-carrying empiricists would reasonably find their 
position vindicated if all of the following were true: neural networks are capable of 
acquiring new representational primitives, flexibly shaped by “experience” (e.g., Nasr et 
al. 2022), via non-classical operations that, arguably, bear a striking resemblance to the 
empiricists’ cherished mode of concept acquisition by “abstraction” (Buckner 2018; c.f. 
L&M Ch.5). If so, L&M’s nativist could seem to have changed the subject: given the 
autonomy of psychology from neural network-based implementation, novel concepts 
flexibly acquired via neural network-based abstraction will wind up components of the 
system’s/organism’s innate acquisition base, on account of having been acquired through 
a sub-psychological process. This seems problematic. Regardless of our own sympathy 
for Fodor and Pylyshyn’s position on the insufficiency of non-classical, neural network 
architectures as models of human cognition, if neural networks in the human brain were 
to enable flexible acquisition of novel concepts via something like Lockean abstraction, 
we think that the empiricist would be right to consider this a win. 

We here focus on a second complication. In highlighting a variety of theoretical options 
available to concept nativists, the book serves as a useful handbook for understanding 
and situating a range of specific nativist proposals. Nevertheless, L&M do purport to offer 
an evaluable nativist proposal of their own which, simply stated, is that “many concepts 
across many different conceptual domains are either innate or acquired via rationalist 
learning mechanisms” (6) provided for in the acquisition base. This position is, 
furthermore, distinguished from “empiricist views” which “substantially underestimate 
the richness of the acquisition base underpinning human development” along with 
“many rationalist views… as well” (ibid.).  

To properly evaluate L&M’s proposal in comparison with these others, however, we 
require greater specificity about which concepts in which domains meet their conditions 
for concept nativism and how. L&M do explicitly distance their proposal from Fodor’s 
brand of concept nativism, on which all lexical concepts, whether primitive (Fodor 1975; 
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1981) or complex (Fodor 2008), are innate (see Part IV of their book). But to assess whether 
they are right to nevertheless conclude that other rationalist proposals “substantially 
underestimate the richness of the acquisition base”, much turns on the specific respects 
in which these conceptual domains are said to be innately structured. For instance, L&M 
intend to endorse a more expansive brand of concept nativism than that advocated by 
proponents of the core cognition hypothesis, according to which humans are endowed 
with a small number of special purpose systems for objects, places, forms, numbers, 
agents, and language (Spelke 2022). Yet, pending a clear specification of the innate 
mechanisms and representations involved in the acquisition of any given concept, it will 
remain unclear exactly how that hypothesis should be seen to have underestimated what 
is found in the acquisition base. In principle, it may be that the acquisition of comparative 
concepts like MORE and MOST (see e.g. Knowlton et al. 2021) is innately tied to the 
operations of some of these core systems (see Section 3), without their acquisition 
requiring further core systems. 

To reiterate, this under-specification does not detract from the book’s value as a welcome 
guide to nativist-friendly argumentation. However, it does render the book’s final verdict 
somewhat unsatisfying, insofar as it sidesteps what many ultimately care about in 
debates between concept nativists and empiricists: which concepts and structures are 
innate, and in virtue of what.  

In the following, we work out different ways of elaborating L&M’s account to make that 
contribution in a domain which is considered throughout their book: number concepts. 
We will find that L&M vacillate between two “brands” of concept nativism in this domain 
but neglect to consider a third. Considering what flows from each such brand of nativist 
account, we suggest that L&M would do well to adopt the third. We close by considering 
certain ramifications for the acquisition of quantificational concepts more broadly. 

2. Three brands of number nativism 
a. Type A Number Nativism 

The acquisition of number concepts is an important case study for the nativist. Numerical 
cognition is one of the best studied domains of pre-linguistic thought (Dehaene 2011), 
and many of our best-developed theories of concept learning have been formulated with 
respect to the acquisition of exact number concepts (Carey 2009). It is unsurprising, then, 
that this is one domain in which L&M are most emphatic that concept nativism obtains. 
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Echoing the above, their basic contention is that this is so, irrespective of whether specific 
number concepts like SEVEN are learned. For brevity, we shall call this view—that 
nativism obtains in the domain of number, even if the specific concepts are learned by 
means of appropriate nativist-friendly learning mechanisms—Type A Nativism. 

To motivate Type A Nativism, L&M posit a role for the approximate number system 
(ANS) in number concept acquisition (see also: Margolis & Laurence forthcoming). The 
ANS is a psychological system that represents numbers per se (Clarke & Beck 2021; Beck 
& Clarke forthcoming) or numerical quantities of some more general variety (Samuels & 
Snyder 2024). However, unlike the representations generated by an adult’s mature 
counting capacity, the ANS represents in a characteristically imprecise, approximate 
manner. Success in discriminating two numerical quantities with the ANS conforms to 
Weber’s Law, and is thus a function of ratio, rather than absolute difference: as the ratio 
gets closer to 1:1, discrimination gets harder. For instance, using the ANS, discriminating 
10 from 8 is easier than discriminating 10 from 12, despite the absolute difference 
remaining constant in either case.  

There is abundant evidence for an ANS of this sort. For instance, one study (Barth et al. 
2005) presented 5-year-olds with a set of blue dots on a computer screen, following which 
an opaque block slid across the screen and blocked the dots from view. A second set of 
red dots then moved onto the screen, and children were asked a straightforward question: 
Are there more blue dots (behind the block) or red dots (on the screen)? Despite being 
too young to reliably count the dots, researchers observed that the children performed 
significantly above chance and with errors as predicted by Weber’s Law. That is, the 
further the ratio from 1:1, the be<er the children performed: they were more accurate 
when the collections differed in number by a ratio of 4:7 than when they differed by 4:6, 
and be<er on ratios 4:6 than 4:5.  

This result in and of itself is unsurprising in light of much previous work (e.g., Xu & 
Spelke 2000; Lipton & Spelke 2003). More striking is that Barth et al. observed the same 
effect when they tested children of the same age on a cross-modal version of the task. In 
this variation, one of the collections of visually-presented dots was replaced with a 
sequence of auditorily-presented tones, and children were asked if there were more dots 
in the visually-presented collection or in the sequence of heard tones. Children’s accuracy 
and error pa<erns were no different than when they had compared two visually-
presented collections.  
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As L&M and others note, cross-modal results of this sort are important when considering 
claims about the existence of an ANS, because they directly eliminate the potential for 
non-numerical factors to serve as the basis of participants’ discriminations.1 Use of 
visually-presented collections alone may otherwise be criticized for inadvertently 
providing cues to the expected answer by means of non-numerical confounds like 
average diameter, cumulative surface area, spatial density, or convex hull (e.g., Leibovich 
et al. 2017). However, sequences of heard tones lack these properties, ruling out such 
deflationary interpretations. Likewise, the confounds that one might worry about in a 
uniformly auditory discrimination task (e.g. the pitch, loudness, or duration of heard 
tones) are either absent in visually presented collections or easily controlled for.  

It is thus difficult to see how results like Barth et al.’s could be explained without positing 
a basic competence to represent and discriminate the approximate number of items 
(whether dots or tones) in perceived collections. Moreover, cross-modal discriminations 
of this sort have been observed in a wide array of non-human animals like rats (Meck & 
Church 1983) and monkeys (Jordan et al. 2008), which may suggest evolutionarily ancient 
origins (L&M Ch.10). They have also been observed in newborn human infants, under 3 
days old (Izard et al. 2009), who haven’t yet had a chance to learn much of anything (L&M 
Chs. 8-9). L&M thereby follow the lion’s share of researchers working on this topic in 
thinking that the ANS exists and, in L&M’s terms, is most plausibly thought of as an 
innate component of our acquisition base.  

How does this relate to concept nativism? Recall that Type A nativism holds that number 
concept acquisition vindicates nativism even if specific number concepts are not innate, 
but rather learned by means of appropriate nativist-friendly learning mechanisms. When 
wearing their Type A Nativist hat, L&M state that the existence of an innate ANS does 
vindicate nativism in this sense, irrespective of whether ANS representations themselves 

 
1 While L&M rightly appeal to cross-modal studies as showing that non-numerical confounds can be 
eliminated in ANS studies, the evidence that they cite is sometimes questionable. For instance, Margolis 
and Laurence (forthcoming) appeal to Arrighi et al.’s (2014) finding that sensory adaptation to number 
transfers across modalities, wherein e.g. hearing a large number of tones yields a repulsive visual aftereffect 
such that a seen collection of dots subsequently appears less numerous. However: these results have failed 
to replicate (Yousif, Clarke, & Brannon 2024); they cannot be experienced in the way that other visual 
aftereffects can (even alleged aftereffects to number – see Burr & Ross 2008); and, they are now the subject 
of a multisite adversarial collaboration scrutinizing their veracity. What maYers for present purposes, of 
course, is that there are many reliable cross-modal number discrimination studies which can be leveraged 
in support of an ANS with genuine number content. 
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are concepts. More generally, in Type A mode, L&M can grant that there are no innate 
number concepts in the acquisition base, so long as they are “acquired on the basis of an 
acquisition base that contains a highly articulated, complex, domain-specific learning 
mechanism that is directed to the numerical domain” (Margolis & Laurence forthcoming, 
p. 9). Throughout their book, L&M claim that the ANS is implicated in some such learning 
mechanism, remarking, in fact, that this “is all but inevitable” (p. 256). 

They provide two reasons for this claimed inevitability. First, the ANS’ characteristic ratio 
sensitivity is observed not only when children or adults (Barth et al. 2003) discriminate 
numbers of perceived items as in the studies just described, but also when numerate 
adults are tasked with discriminating numerals (Dehaene 1997). Moyer and Landauer 
(1967), for instance, asked adults to identify which among successive pairs of Arabic 
numerals (between 1 and 9) represented a larger number. This was an easy task for their 
participants; however, their reaction times showed a marked distance effect, increasing 
as they judged numerals representing numbers with ratios closer to 1:1. Follow up work 
by Buckley and Gilman (1974) showed that these discriminations also displayed a size 
effect, such that reaction times were affected by the absolute size of the smaller quantity 
discriminated. Together, these distance and size effects imply conformity to Weber’s Law 
at some level of representation. This has convinced many – L&M included – that the ANS 
plays an important role in mature and conceptually-mediated numerical thought of a sort 
we might employ in a math class.  

L&M’s second reason (p.256-7, fn. 21; see also Margolis & Laurence forthcoming) for 
thinking that the ANS “inevitably” structures number concept acquisition is that 
variation in the acuity of one’s ANS predicts mathematical competence. For instance, 
Halberda et al. (2008) found correlations between individual differences in 14-year-olds’ 
numerical approximation abilities and their past scores on standardized math tests. L&M 
interpret these findings as convergent evidence that, even if number concepts are learned 
rather than innate, such results would not obtain unless the acquisition of number 
concepts was supported by the ANS, further vindicating Type A Number Nativism. 

How convincing are these two reasons? We are not sure. Take L&M’s suggestion that the 
ANS is implicated in the finding that reaction times conform to Weber’s Law when 
identifying the larger or smaller of two Arabic numerals. This suggestion is potentially 
problematic in that conformity to Weber’s Law – as indexed by effects on reaction times 
– obtains whenever two perceived magnitudes are discriminated, as well as when 
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humans a<empt to identify the larger or smaller of any two conceptualized quantities, 
including relative positions in a sequence. For example, conformity to Weber’s law is 
observed when participants judge the ordinal positions of le<ers in the alphabet 
(Hamilton and Sanford 1978) or which of two stimuli is be;er or worse (Holyoak and 
Walker 1976). Reaction times may, thus, show conformity to Weber’s Law whenever 
judgments must be formed about the differences between any of two stimuli in an ordered 
sequence. As a result, observing this pa<ern with Arabic numeral discrimination can’t 
obviously implicate the ANS (or even a more generalized perceptual magnitude system; 
Walsh 2003), let alone show that the ANS is inevitably involved in the acquisition of the 
number concepts denoted by the numerals. 

Do studies identifying correlations between ANS acuity and mathematical competence 
fare be<er in this regard? The studies cited above do demonstrate specific correlations 
between the ANS and a developing mastery of mathematics. But, even bracketing 
concerns that the observed correlations are weak (Carey & Barner 2019), it is not 
immediately clear that the results pertain to the acquisition of number concepts as L&M 
presume. A live possibility is that (exact) number concepts are acquired independently 
of the ANS, either through innate pre-programming (Clarke 2025) or distinct learning 
mechanisms (Carey 2009); once acquired, number concepts can then be linked up with 
the ANS as an aid to reasoning about numerical quantities in different kinds of tasks. For 
example, a mature understanding of the question “What is four plus eight?” demands 
exact number concepts. Nevertheless, a child might use their ANS to quickly assess 
whether candidate answers to this question are in the ballpark of being correct. 

There is more to be said on these ma<ers. For present purposes, we can simply say that 
L&M’s claim that the ANS “inevitably” structures number concept learning – and thereby 
that Type A Nativism surely obtains, even if exact number concepts are learned – strikes 
us as premature.  

b. Type B Number Nativism 

Type A Nativism holds that number concepts can be innately structured in advance of 
experience, without being innately hardwired into the acquisition base. And although 
L&M are keen to emphasize that Type A Nativism will suffice to vindicate the rationalism 
they care about in the domain of number, they occasionally set out to defend a prima facie 
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stronger claim: that the representations manipulated by an innate ANS themselves 
constitute number concepts. We shall call this Type B Nativism. 

L&M offer both positive and negative arguments for Type B Nativism.  

On the one hand, L&M seek to rebut arguments to the effect that ANS representations 
could not qualify as concepts. The most prominent of these is Beck’s (2012) argument that 
ANS representations aren’t concepts because they fail to satisfy the Generality Constraint 
(cf. Evans 1982). The Generality Constraint, taken as a necessary condition on a 
representation R being qualified a “concept”, requires that R’s distribution in thought be 
free up to the limit of its syntactic type.2 For instance, if one is in possession of 
representations JOHN, LOVES, and MARY, and one is capable of entertaining the 
thought JOHN LOVES MARY, by the Generality Constraint we should say that this 
thought is constructed out of concepts only if one is immediately guaranteed the ability 
to entertain the thought MARY LOVES JOHN, etc.   

Beck argues that the ANS’s conformity to Weber’s Law prevents its representations from 
systematically recombining in these ways. Take Xu and Spelke’s (2000) claim that 6-
month-olds can use their ANS to perform numerical discriminations if and only if the 
numerical quantities involved differ by a ratio of at least 1:2. Now suppose that a six-
month-old who uses their ANS to think 8<16 and 12<24 thereby tokens ANS 
representations of 8, 12, 16, and 24. Despite these accomplishments, the infant is 
nevertheless incapable of recombining those constituents to formulate thoughts like 
12<16 or 16<24, according to Beck, since 12:16 and 16:24 are below their 1:2 capacity 
limitation. Similar points apply irrespective of the specific ratio at which ANS 
discriminations are said to become impossible, and irrespective of whether the ANS is 
seen to represent exact numbers, numerical ranges, or even ranges with a probability 
distribution a<ached. So, Beck concludes, ANS representations fail to systematically 
recombine as required by the Generality Constraint and thus fail to qualify as concepts.  

We (alongside more recent incarnations of Beck [2023]) side with L&M in rejecting this 
conclusion. However, we do so for slightly different reasons. L&M suggest that Beck’s 
argument fails to preclude ANS representations qualifying as concepts because it 

 
2 Evans (1982), in a footnote, and others in subsequent works, add a further semantic restriction so as to 
exclude “category mistakes” from among the class of well-formed thoughts; we take this further restriction 
to have been ably rebuYed by Camp (2004).  
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conflates competence and performance: while 6-month-olds may be unable to 
discriminate 12 from 16 objects observed, this doesn’t show that they lack the competence 
to formulate the thoughts 12<16 or 16<24. Thus, ANS representations might meet the 
Generality Constraint, for all that Beck has shown. To our minds, this response alone 
seems too weak, absent some plausible proposal for why and which performance factors 
would give rise to these highly specific ratio thresholds in the subjects at issue.  

As we see it, there is a more fundamental problem with Beck’s argument. That is, there 
simply are no such ratio thresholds as needed to bolster the argument; Beck, in fact, 
erroneously assumes what Clarke (2023) has called “The Cliff Edge Model” of Weber’s 
Law. According to that model, conformity to Weber’s Law implies that there is a set ratio 
at which ANS discrimination suddenly becomes impossible. In tacit agreement with this 
model, L&M follow countless others in describing the ANS’s thresholds for 
discrimination as 1:3 in newborns (Izard et al. 2009) and 1:2 in six-month-olds (Xu & 
Spelke 2000), etc. But this isn’t the right way to think about Weber’s Law (Halberda 2016).  

For a start, the Cliff Edge Model conflicts with foundational work in psychophysics. 
Signal detection theory treats the discriminability of two collections as a continuous 
function of their ratio – as such, discrimination simply becomes more error prone as ratios 
approximate 1:1. Crucially, however, performance never truly falls to chance, as should 
be evident whenever the number of observations increases sufficiently. In a stunning 
vindication of this conjecture, Sanford & Halberda (2023) observed that people always 
performed significantly above chance in their ANS-based numerical discriminations, 
even with extremely difficult ratios, like 50:51. Moreover, participants’ errors were 
accurately modelled by the continuous functions predicted by signal detection theory, 
while poorly modelled by a rival Cliff-Edge Model. So, if we run enough trials, it seems 
that the ANS is nevertheless above-chance at identifying the larger numerical quantity. 
An ANS that can represent 4<50 and 5<51 would appear to be afforded the potential to 
represent 50<51. Indeed, an ANS that can represent 4<500 and 5<501 would appear to be 
afforded the potential to represent 500<501. And so on.   

This casts doubt on Beck’s argument – the premise that we require a specific ratio 
difference to perform ANS-based discriminations appears to be false. Supposing that 
there are hard-and-fast ratio limitations on the numerical representations that can be 
meaningfully combined by the ANS is premised on review of studies with an arbitrary 
number of trials; but, statistically above chance performance seems to always emerge 
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with harder ratios if an appropriate number of trials are run. The upshot is that any time 
an organism can use their ANS to represent A<C and B<D, we should believe that they 
can use that system to represent A<B, irrespective of how close A:B sits to 1:1. 

These considerations clear space for the Type B Nativist view that ANS representations 
might indeed be number concepts. Yet, despite taking the time to defend this conclusion, 
L&M ultimately disregard it: their considered view is not so much that ANS 
representations do or don’t conform to the Generality Constraint, but that the constraint 
itself cannot be relied upon to draw the conceptual/non-conceptual distinction. In 
defending Type B Nativism, L&M instead recommend a simpler cut: 

“a be<er way of approaching the question of whether approximate numerical 
representations are conceptual in animals (and by extension, in humans) is to ask 
whether such representations figure in a variety of higher cognitive processes such 
as categorization, planning, and decision making.” (307) 

Evading vexed issues regarding the proper mark of the conceptual, the proposal is that 
we can simply ask whether ANS representations play a role in the abovementioned 
characteristic cognitive processes. Proceeding to note that the ANS does play such roles, 
Type B Nativism is seen as inescapable. 

For us, this way of categorizing ANS representations as concepts cheapens the issue. We 
do not deny that the ANS serves to facilitate categorization, planning, and decision making. 
In fact, the ANS as a posit has come to be widely accepted precisely because it has been 
observed to play such roles. For instance, when fish are deciding between which of two 
shoals to join, they tend to join the shoal with a larger number of fish (Hager et al. 1991; 
Buckingham et al. 2007), suggesting an operational ANS in these creatures (Messina et al. 
2021). That is, we need something very much like an ANS to make sense of the fact that 
these creatures can categorize shoals in their environment based on their approximate 
number and use these categorizations to decide and plan which to join.  

For sure, complications abound when philosophers a<empt to clarify the distinction 
between conceptual and non-conceptual representations. Nevertheless, when researchers 
discuss number concepts and their origins, they are ultimately concerned with asking 
how we acquire the exact number representations we come to employ in the classroom, 
as when we think SEVENTEEN IS PRIME. For instance, Carey (2009) takes the hardline 
view that ANS representations play no role in the acquisition of these concepts, holding 
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instead that they must be learned in culture-specific ways which tax entirely independent 
cognitive mechanisms devoid of any numerical content whatsoever.3 Yet, neither Carey 
nor anyone else seriously engaging with ANS research would deny that ANS 
representations are conceptual in L&M’s deflated sense. L&M are, of course, free to 
characterize concepts how they like. However, their Type B Nativism seems orthogonal 
to the concerns of those most invested in understanding numerical development.   

A Type B Nativist might then do be<er by, instead, operationalizing a theory-light 
conceptual/non-conceptual distinction by asking if ANS representations are identical to 
the exact number concepts that children later employ in a maths class. But, substantive 
though it would be for a Type B Nativism to answer this question affirmatively, we think 
it implausible. One issue is that an identity between ANS representations and exact 
number concepts cannot accommodate the fact that the mapping between the outputs of 
our ANS and our considered judgments about how many items are in a set is unstable. A 
distinction between the two is required to make sense of the fact that one and the same 
ANS representation can give rise to the considered judgement that, in one context, a 
collection contains 20 items, and that, in another, it contains 40 (Sullivan & Barner 2013; 
Clarke 2025).  

Hence, while Type B Nativism seeks to identify ANS representations and number 
concepts, the view is trivial if formulated as L&M recommend, and implausible if 
reformulated to engage with research in numerical and conceptual development. 

c. Type C Number Nativism 

L&M vacillate between Types A and B Nativism throughout the book when discussing 
the ANS and its relation to exact number concepts. But these two possibilities do not 
exhaust the options. Exact number concepts of the sort deployed in a math class could be 
learned on the basis of mechanisms that are entirely orthogonal to the ANS (e.g., Carey 
& Barner 2019). Or, more dramatically, they could be innate constituents of the 
acquisition base (Clarke 2025). We call this la<er possibility Type C Nativism.  

In some ways, it is strange that L&M do not emphasize Type C Nativism, since they have 
elsewhere recommended that a separate small number system (SNS) affords humans and 
other creatures with innate concepts of ONE, TWO, and THREE (Margolis 2021; c.f. 

 
3 Carey thus rejects Type A Nativism with respect to the ANS viz-a-viz mature number concepts. 



 13 

Feigenson et al. 2004). That proposal leaves open, of course, how larger numbers come to 
be conceptualized – e.g., TWENTY-THREE or SEVENTY-TWO. However, Type C 
Nativism can naturally extend beyond the starting idea that SNS representations feature 
in an account of how larger number concepts are acquired, by proposing that the 
acquisition base contains the (finite) resources to generate the (infinite) sequence of 
natural numbers. For instance, the acquisition base may contain ONE, TWO, and THREE, 
plus the pre-requisites for generating larger numbers from them in conformity with the 
successor function. On this view, one can maintain that all natural number concepts are 
innate, even for those so large that one has not had occasion to think of them directly. 
What it is to possess the concept of any such number is already provided for in the 
acquisition base.  

L&M do not discuss such a view in their book. However, in a recent chapter of a 
forthcoming volume they mention a recent defence of it (Clarke 2025), only to claim that 
it relies on an “overly narrow view of concept nativism” (Margolis & Laurence 
forthcoming). Now, to some extent “concept nativism” is a term of art, and L&M can use 
it however they want. But regardless of whether Type C Nativism is a narrower thesis 
than number nativism as L&M understand it, the view should be considered on its own 
merits, not least because it enjoys several virtues over the proposals that L&M seem more 
enthusiastic about.  

Consider that, unlike L&M’s Type B Nativism, Type C Nativism directly engages with 
the concerns of developmentalists who are interested in how exact number concepts are 
acquired (Carey 2009; Spelke 2017). And while Type C Nativism is not popular, it is ironic 
that L&M have in fact done much to show that standard arguments against it are 
unpersuasive. For example, where rival accounts maintain that exact number concepts 
must be learned given the unusually protracted developmental trajectory involved in 
acquiring an understanding of number words (Le Corre & Carey 2007), Margolis (2021) 
notes that there may be special reasons why children have difficulty accurately mapping 
pre-existing number concepts onto number words (see also: Spelke 2017; Clarke 2025). 
Likewise, Laurence and Margolis (2007) have rightly noted problems with cross-cultural 
evidence widely interpreted as showing that acquiring exact number concepts depends 
on culturally inherited number words (see also: Bu<erworth 2008; Clarke 2025). Such 
considerations clear space for Type C Nativism to be taken seriously. 
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Of course, these considerations don’t show that Type C Nativism is true. Nevertheless, a 
further consideration is that recent empirical studies have borne out some of its 
distinctive predictions.  

To appreciate this, consider that accounts on which number concepts are learned, rather 
than innate, are often motivated by the lack of evidence that infants and young children 
can represent exact numbers, at least outside of the “subitizing” range (Spelke 2017). For 
instance, it may appear that infants’ only performative facility with numbers >3 is 
approximate, making use of their ANS. However, recent findings suggest that children, 
even young infants, do perform large and exact number discriminations.  

In the domain of grammar learning, for example, sophisticated computational models 
make sharp predictions about the frequency with which a grammatical rule must be 
respected in order for it to be productively generalized to new cases. Charles Yang’s 
(2018) influential work on the Tolerance Principle holds that a given grammatical rule 
will be productively generalized to novel cases just in case the number of observed 
exceptions to the rule does not exceed the total number of observed types falling under 
the rule, divided by the natural logarithm of that total. This amounts to the prediction 
that, in a grammatical domain with 10 types, at least 6 (60%) of these must conform to the 
relevant rule for that rule to be productively generalized. In a domain with 20 types, at 
least 14 (70%) of these must conform. More generally, the relative number of exceptions 
that can be tolerated decreases with domain size and must therefore be calculated from 
that domain’s size on a case-by-case basis. 

The predictions of Yang’s Tolerance Principle have now been borne out with astonishing 
accuracy. To give just one example, Shi and Emond (2023) exposed non-Russian-speaking 
14-month-olds to 16 three-word sentences of Russian, which either conformed or failed 
to conform to a certain movement rule (ABC → BAC vs. ABC → ACB). Given a domain 
with 16 types, the Tolerance Principle predicts that productive generalization should 
occur only if there are <5.77 exceptions. If 11 sentences conformed to the movement rule 
and 5 did not, the Tolerance Principle thereby predicts that generalization would occur. 
Consistent with this prediction, a first experiment showed that infants looked 
significantly longer when a subsequent test stimulus failed to follow the rule that was 
otherwise respected by 11 sentences in their exposure set. By contrast, a second 
experiment testing different infants provided an identical training set except only 10 of 
the sentences conformed to the rule, leaving 6 exceptions – a number that now exceeded 



 15 

the predicted tolerance threshold. In this case, infants did not look significantly longer 
when the subsequent test item failed to conform to the rule. 14 month-olds appear to have 
thereby distinguished sets containing 11 regulars and 5 exceptions from sets containing 
10 regulars and 6 exceptions, given a common set size of 16, in perfect harmony with the 
predictions of Yang’s Tolerance Principle. To put this result into context, note that if 
children had misrepresented these collections as containing even 17 types, the Tolerance 
Principle would now predict that the infants should tolerate the 6 exceptions.  

It is not hard to find other studies that similarly vindicate the exact predictions of Yang’s 
Tolerance Principle (Schuler et al. 2016; Yang 2016; see also: Gomez & Lakusta 2004; 
Koulaguina & Shi 2013; 2019). Yet these data run counter to the predictions of mainstream 
accounts of number cognition according to which representations of exact natural 
number must be learned. The competence to discriminate 5 sentence types from 6 should 
be way beyond the threshold at which ANS-based discrimination is possible for just 
about anyone, but certainly for 14 month-olds. This is because Shi and Emond’s infants’ 
ability to discern 5 or 6 rule-violating sentence types, and appreciate the significance of 
this difference given a collection of 16 (not 17) sentence types, emerged in a study 
comprising a comparable number of trials to studies of ANS acuity run in infants, like Xu 
and Spelke’s (2000), and despite these infants being tested on considerably less trials than 
adults when found to perform an apparent maximum of 7:8 discriminations (Barth et al. 
2003). So, while it is true that adults can be shown to perform harder discriminations 
using their ANS (e.g., 50:51) when evaluated over hundreds of trials (Sanford & Halberda 
2023), the 14 month-olds who were tested by Shi and Emond discriminated between 
numerical subsets of 5 versus 6, within larger collections of 16, with a level of precision 
that is unheard of in ANS tasks, even tasks run on adults, despite the well-established 
observation that ANS acuity improves during development (Libertus & Brannon 2010; 
Clarke et al. 2025). This strongly suggests that some orthogonal system of exact 
enumeration was being employed by the infants in Shi and Emond’s study.  

Of course, it remains an open question whether the numerical representations 
underwriting infants’ success in such studies form the basis of our mature and exact 
number concepts. However, a third and independent reason to seriously explore Type C 
Number Nativism is that it avoids a dilemma faced by rival accounts (Clarke MS).  

Suppose for the dilemma’s construction that mainstream accounts of numerical 
development are correct in maintaining that children must learn to represent natural 
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numbers and that, prior to accomplishing this, their only facility with large numbers is 
via the imprecise representations produced by the ANS (Carey & Barner 2019). Suppose, 
further, that these ANS representations differ from the mature number concepts by (e.g.) 
“obscuring the successor function” (Carey 2009: 295) or other structural properties of the 
exact concepts that must ultimately be learned.  

The first horn of the dilemma is that, if this is correct, then it is difficult to see why children 
would not form deviant mappings between their number representations and 
corresponding labels in natural language. Why, on such a view, would the 
representations at children’s disposal not lead them to behave as if words for larger 
numbers are less differentiated, corresponding to the approximate numerical values at 
their disposal? This is troubling, since the evidence which motivates learning accounts 
suggests that children never do this: in learning the meanings of number words, children 
move through crisp successive stages in which they become one knowers, then two knowers, 
etc. such that they correctly respond to requests for one or two items respectively, but 
continue to give a random number of items when asked for any larger quantity.  

The second horn of the dilemma looms if one, instead, denies that the ANS obscures the 
successor function or holds that there are additional mechanisms in the acquisition base 
which dictate that number concepts conform to the successor function and the other 
properties that distinguish a mature grasp of natural number. For, at this point, there 
appears li<le daylight left between the resulting view and the Type C Number Nativism 
that L&M and others seek to avoid: both would agree that the acquisition base contains 
the finite resources needed to generate large and exact number representations. 

One is left wondering whether L&M are so keen to show how accommodating nativists 
can be, that they have neglected to acknowledge that a straightforward and well-
motivated brand of number nativism is being swept under the rug.  

3. Broader Ramifications 

To close our discussion, we underscore that L&M should care about these distinctions, 
and about the question of which numerical representations, specifically, are in the 
acquisition base, as this can help us to appreciate when and how rationalist friendly 
mechanisms might structure rationalist learning more generally – the idea that L&M care 
most to motivate. For instance, we have seen that the exact numerical representations 
required by the Tolerance Principle help to structure grammar learning, and there may 
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be reason think that ANS representations of rational numbers (Clarke & Beck 2021; Qu et 
al. 2024) guide children in their learning more generally, enabling them to focus their 
attention on statistically surprising events from which there is more to learn (Xu 2019). In 
fact, while we may have seemed unenthusiastic in our presentation about the role that 
ANS representations play in numeric conception, we expect that such representations 
(and approximate magnitude representations more generally) play important domain-
specific roles in the acquisition of other concepts. 

Consider, for instance, comparative words like more and most. Although semantic theory 
had long modeled the meaning of most in terms of precise cardinalities, Halberda, Taing, 
and Lidz (2008) found an important dissociation between children's early knowledge of 
exact number words and their understanding of most. After assessing knowledge of exact 
number words using the Give a Number and How Many tasks, Halberda et al. presented 
children with pictures of two sets of animals and asked them which contained "most". 
They observed that some of the children who had not yet grasped the meaning of exact 
number words (“non-counters”) performed above chance on the Most task, and that 
some of those who had (“full counters”) performed at chance. This suggests that a facility 
with exact number words is neither necessary nor sufficient for children’s initial 
comprehension of most. Examining these groups more closely, the researchers found that 
the non-counters’ pattern of errors was consistent with the ratio-dependent signature of 
the ANS, and suggestive evidence that this signature was evinced in the full-counters' 
performance as well: their data displayed a slight trend of ratio-dependent performance. 
However, Halberda et al did not examine individual children's data to see whether the 
slight trend obscured further differences within the full counters; subsequent work has 
explicitly tested and confirmed this, however (Odic et al. unpublished), suggesting that 
exact number word and most acquisition are independent.  

Without longitudinal data, we cannot conclude too much about the developmental 
trajectory of knowledge of quantifier semantics viz a viz exact number concepts and 
approximate number. However, it is reasonable to suppose that the meaning of most, like 
its closely related counterpart, more, is initially connected with systems responsible for 
representing magnitudes, quite generally, albeit approximately. For one thing, neither 
most nor more is unambiguously specified for NUMBER; in full generality, they quantify 
and compare any magnitudes that people are capable of representing (e.g., most of the 
soup, more beautiful, the most expensive; Wellwood, 2019, 2020). Nevertheless, both non-
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counters (Halberda et al. 2008) and fully numerate adults under time pressure use their 
ANS to evaluate most and more sentences (Pietroski et al. 2009, Knowlton et al. 2021), 
discouraging the thought that numerate adults' use of exact natural number in 
assessments of most are fundamentally different in kind. Plausibly, then, children initially 
acquire most and more (at least when applied to count nouns like ducks) in terms that make 
verification via the ANS directly and readily appropriate. Adults retain that knowledge 
but know something more – that exact counting can be a better verification procedure for 
that meaning (see Hunter & Wellwood 2023 for a formal treatment).  

On the face of it, this pattern of results might seem congenial to an empiricist, who 
maintains that the meaning of e.g. most (and MOST) is learnt from experience. After all, 
that position might neatly accommodate the protracted development, outlined above, 
where most is first mapped to approximate magnitudes and only later to exact number 
concepts. In fact, an empiricist might be emboldened to note that children need to learn 
the ordering relations specified when mapping most to approximate magnitude 
representations, as reflected in the fact that certain non-counters understand most as 
meaning least (Halberda et al 2008, Odic, Pietroski, et al 2013; Odic et al, unpublished). 

On inspection, however, we think that an empiricist account of comparative concepts like 
this is unlikely. For one thing, children make very fine-grained distinctions in their use 
of these expressions. For instance, by age 3 years 3 months, children demonstrate adult-
like understanding of more goo in terms of area and more dots in terms of number, even 
when these dimensions are manipulated orthogonally (Odic et al 2013). And, plausibly 
by age 4 at least, children perform subset-superset comparisons between two sets of dots 
given most but subset-subset comparisons given more (Knowlton et al 2021. Since the 
latter result holds in circumstances where these differences in cognitive operation fail to 
support differences in truth value, it is hard to see how or why these diverging “cognitive 
instructions” could be taught or otherwise learnt from experience. It is, thus, plausible to 
conjecture that an initial mapping between comparative concepts, like MOST, and innate 
systems of approximate magnitude representation is structured in advance of experience. 

We further conjecture that children’s subsequent mapping of these concepts onto exact 
number concepts is likewise pre-structured. On the above picture, children first map 
more/most to approximate magnitudes, with more meaning something like LARGER-
APPROXIMATE-CARDINALITY – a genuinely distinct relation from that involving 
exact number comparison. The empiricist will maintain that children enter into a process 
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of conceptual change, induced by counting practice. Following that conceptual change, 
the child comes to understand that more, polysemously, can also mean LARGER-EXACT 
CARDINALITY. But how would children come to appreciate and posit this new 
meaning?  

Replacing one conceptual scheme with another, presumably, requires that the child 
recognize the inadequacy of their current concepts. Yet it is unclear how or why they 
would do this in the case at hand. To illustrate the problem, first note that ANS 
representation would enable children to accurately and reliably identify MORE and 
MOST in many contexts, at least when the collections differ in size by a suitably large 
ratio. For instance, upon presenting children with two collections, they might correctly 
recognize that, e.g., "This array has THREEISH chickens, and that array has FIVEISH 
cows” and proceed to conclude “Since FIVEISH > THREEISH, there are more chickens." 
In such situations, there is nothing deficient about their ANS-based procedure. But even 
in cases where the ratios sit closer to 1:1, rendering children liable to make mistakes when 
using ANS representations to formulate MORE thoughts, correction via an exact counting 
procedure will always be compatible with mapping such conclusions onto approximate 
numerical values. Ditto with tracking the testimony of adults: every true verifiable 
instance of "three chickens" will have corresponding ANS-based interpretations such as 
“THREEISH chickens”. In other words, if one is willing to think that what is one chicken 
in the world is ONEISH chickens – if a child understands exact number words that way 
early on – nothing in one's experience alone should compel one to think that this is wrong.  

Type C Number Nativism, of the sort defended above, soothes this problem. Under Type 
C Nativism, the innate acquisition base contains tacit knowledge that numbers are 
positions in a structure defined by the successor function which, by construction, defines 
an exact number comparison relation. This knowledge is implicit, evidenced in work like 
that on the Tolerance Principle, showing that 14 month-olds distinguish small differences 
in the numbers of sentence types within a domain (Shi and Emonds 2023). But, if distinct 
systems of ANS based representation and exact number concepts represent the same 
thing – albeit with differing levels of precision – and children tacitly know this, then we 
can begin to see how the integration of ANS and exact number concepts might emerge 
when counting, speed, and experience leads to situations in which the ANS errs but 
counting succeeds. Either way, such speculations illustrate that clarity on the specific 
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contents of the acquisition base is likely to prove invaluable when assessing the space of 
options open to the concept nativist, as L&M conceive of those options. 
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