The Big-Number Small-Number Problem in Infant Number
Cognition

Abstract: In subitizing tasks, infants accurately discriminate small collections, up to a set-size
of ~3, after which performance falls to chance. It remains unclear, however, why performance
consistently falls to chance under these conditions given that infants possess an equally well-
attested capacity to approximately enumerate larger collections. I call this The Big-Number
Small-Number Problem. This paper clarifies The Problem, notes that it is exacerbated by
influential ways of thinking about infant numerical cognition and argues that existing “solutions”
to The Problem are unsatisfactory. It then develops an improved solution, which turns on
independently motivated claims about the format of the representations involved and the
signature limits of infant working memory. Beyond generating testable predictions, this
improved solution has ramifications for the architecture of numerical cognition, the structure of
perceptual representations, and the ways in which perceptual states refer.

1. Introduction

Infants can approximately enumerate large collections, albeit imprecisely and in accord with
Weber’s Law, such that discriminations are ratio-sensitive (Izard et al. 2009; Xu & Spelke 2000).
Infants can also subitize, or precisely discriminate small collections, but only when these contain
less than ~3 items, after which performance falls to chance (Feigenson et al. 2004). What’s unclear
is why subitizing would consistently fall to chance under these conditions, given that infants
possess the abovementioned ability to approximately enumerate larger collections. I call this 7The

Big-Number Small-Number Problem. This paper aims to clarify The Problem and then resolve it.
2. The Big-Number Small-Number Problem

The Big-Number Small-Number Problem arises because human infants possess myriad numerical
abilities, distinguished by idiosyncratic signature limitations. This essay focusses on their abilities
to approximately enumerate large collections and subitize small collections.! In this opening

section, I clarify these abilities, such that readers can appreciate an apparent tension between them.

! Infants possess a capacity to precisely enumerate large collections in some contexts (Clarke 2025) and for
approximate rational number representation (Denison & Xu 2014; Qu et al. 2024). These further capacities are
orthogonal to The Problem considered here, though related issues might arise when considering their interrelations.



2.1 Approximate Enumeration

‘Approximate enumeration’ concerns a capacity to perceptually discriminate (sometimes quite
large) numerical quantities without counting. This ability is imperfect. Specifically, accuracy
conforms to Weber’s Law: when we approximately enumerate two collections, the ease and
reliability with which we discriminate these is predicted by the ratio between them rather than their
absolute difference in number. Ten dots are easier to discriminate from eight dots than twelve, even
though eight and twelve differ from ten by the same absolute amount. What matters is the ratio

between the quantities — the further from 1:1, the better.

Take Figure 1. Without explicitly counting, you will find it easier to identify that panel B contains
more squares than panel A than that panel C contains more squares than panel B. For instance, you
might feel more confident that B>A than C>B or find yourself unsure as to whether C>B. The
surface area, brightness, and convex hull of all three collections can be controlled for without
affecting this basic result. The key difference is that the ratios between the numerical quantities

varies, with the ratio of items in panels B to C closer to 1:1 than in panels A to B.
<Insert Figure 1>

What’s important for our purposes is that analogous capacities are found in young infants, even
neonates (Izard et al. 2009; de Hevia et al. 2014). Here, researchers have taken care to show that
performance involves a sensitivity to numerical quantities, rather than lower-level properties of
perceived collections (Clarke & Beck 2021). Moreover, diverse brain imaging methods indicate
that these congenital abilities are underwritten by the same neural mechanisms employed by adults
when they approximately enumerate (Cantlon et al., 2006, Hyde et al, 2010). In each case,
performance is marked by a common signature limit — accuracy conforms to Weber’s Law and is
ratio-dependent, likening these infant abilities to those found in adult humans when they

approximately enumerate.

Take Xu and Spelke (2000). These researchers found that when six-month-olds habituated to
collections of eight dots, they dishabituated to collections containing four dots or 16 dots, but not
collections containing 12 dots. Likewise, six-month-olds who habituated to collections of 16 dots,

dishabituated to 32 or eight-dot arrays, but not collections containing 24 or 12. Since non-



numerical confounds, like surface area, brightness, and convex hull were controlled for, it was
concluded that the infants were enumerating the numbers of dots in each collection, but only
approximately, such that discriminating two collections required them to differ in number by a

ratio of at least 1:2.

Follow up studies have since confirmed these results and shown that performance improves with
age. For instance, Lipton and Spelke (2003) replicated the abovementioned findings in six-month-
olds and found that performance was identical irrespective of whether infants discriminated seen
dots or heard tones. They also found that nine-month-olds can perform harder 2:3 discriminations
with comparable reliability. Both results replicate. Indeed, Libertus and Brannon (2010) replicated
both results using a novel change detection paradigm and found that individual differences in task

performance remained constant from one testing session to the next.
2.2 Subitizing

Where ‘approximate enumeration’ concerns a capacity to enumerate and discriminate sometimes
rather large collections (e.g., collections of eight, 16 or 32 items) imprecisely and in accord with
Weber s Law, ‘subitizing’ concerns a capacity to precisely discriminate small collections, up to a

set-size of ~3 or 4.

Like approximate enumeration, subitizing is observed in adults. W.S. Jevons (1871) found that
humans are remarkably accurate at enumerating collections of 1-4 beans quickly tossed into a pan.
More recently, researchers have confirmed these results, finding that humans spontaneously
enumerate sets of <4 attended items quickly (40-100ms/item) and accurately, even when prevented
from counting, while the enumeration of larger collections, outside this “subitizing” range, is slow
(250-350ms/item) and error prone (Trick & Pylyshyn 1994). What’s important is that, once again,
analogous abilities are found in young infants — although, here, the set size limit is smaller (~3
rather than ~4 —) and there is debate as to whether this involves infants explicitly representing

numerical quantities (Margolis 2020).?

Consider Feigenson et al.’s (2002). In these tasks, researchers found that 10-month-old infants
readily distinguish one item from two items, and two items from three items, but are at chance

discriminating three items from four items, two items from four items, or three items from six

2 Those who deny this often prefer the term “parallel individuation” to “subitizing” when labelling these abilities
(Feigenson et al. 2004). Nothing I’ll say turns on this.



items. A follow up study even found that they are at chance discriminating one item from four
items (Feigenson & Carey 2005). So, while ten-month-olds reliably chose an opaque bucket into
which two crackers had been sequentially placed over an opaque bucket containing one cracker,
and an opaque bucket into which three crackers had been sequentially placed over an opaque
bucket containing two crackers, they were at chance choosing between an opaque bucket
containing six crackers and an opaque bucket containing three crackers or an opaque bucket
containing four crackers and an opaque bucket containing just one. Bracketing the fact that infants
reliably chose buckets with four crackers over empty buckets, it was as if 10month-olds completely

lost track of the quantities involved whenever one or both was larger than three.
<Insert Figure 2>

Once again, these results replicate. Matching results are found in manual search tasks (Feigenson
& Carey 2003), tasks involving the discrimination of actions (Wynn 1996) or syllables (Bijelac-
Babic et al. 1993), and in violation of expectation experiments (Wynn 1992). What’s striking, is
that performance across all these tasks falls to chance when infants must discriminate non-empty
collections containing >3 items, with the ratios among collections failing to predict performance
— thus, 3:6 and 1:4 discriminations fail, while 2:3 discriminations succeed, despite 2:3’s relative
proximity to 1:1. This implies that performance in these tasks is not underwritten by infants’
abilities to approximately enumerate. Instead, infants are seen to be drawing on a distinct
psychological system, which facilitates precise discriminations but only among collections
containing three items or less (Feigenson et al. 2004). In other words, the signature limits on
performance in these tasks has been seen to implicate distinct subitizing mechanisms, operating

according to their own psychophysical profile.
2.3 The Problem

In short: Approximate enumeration concerns an ability to represent and discriminate (sometimes
quite large) numerical quantities, albeit imprecisely and in accord with Weber’s Law. Meanwhile
subitizing concerns an ability to precisely discriminate small collections, but only when these
contain less than ~3 items. But while both abilities are operational in young human infants, it’s

non-obvious how to reconcile their signature limitations.

In studies evincing infant subitizing, infants succeed in precisely discriminating sets of one from

sets of two and sets of two from sets of three. But recall: performance falls to chance when they’re



tasked with discriminating (non-empty) collections in which one or more contains >3 items. Thus,
it’s not that performance merely deteriorates when one or more collections contain >3 items.
Rather, performance falls off a cliff (Figure 2). For instance, ten-month-olds tested by Feigenson
et al. fell to chance when choosing between buckets containing two and four crackers (a difference
of 1:2), or when choosing between buckets containing one and four crackers (a difference of 1:4).
Indeed, this general tendency to catastrophically fail in subitizing tasks whenever (non-empty) set
sizes exceed a threshold of three motivates the received view that subitizing is operational in

human infants, and subject to its distinctive set-size limitations (Feigenson et al. 2004).

What’s puzzling is that infants can approximately enumerate larger collections. For instance, six-
month-olds readily discriminate collections of four from eight, collections of eight from 16, or
other quantities that differ by at least 1:2 (Xu & Spelke 2000; Libertus & Brannon 2010). This is
so, even when tested on a small number of trials — when more trials are run, harder ratios can be
discriminated above chance (Halberda 2016). Indeed, such capacities are present at birth (Izard et
al. 2009) and increase in acuity throughout development (Libertus & Brannon 2010). Accordingly,
the 10month-olds tested in Feigenson et al.’s (2002) should have been better approximate
enumerators than the six-month-olds tested by Xu and Spelke (2000). But given this capacity to
approximately enumerate larger collections, outside the subitizing range, why would performance
fall to chance in subitizing tasks whenever one or other collection contains >3items? Even if there
is a three-item limit on what can be handled by infants’ subitizing system, and this is explained by
the system’s basic architecture or algorithms (Feigenson & Carey 2005), why wouldn’t infants
discriminate small collections from large collections outside the subitizing range, imprecisely yet
significantly above chance, by approximately enumerating them, at least when the collections

differ by a suitably large ratio — e.g., 2:4 or 1:4? This is The Big-Number Small-Number Problem.
2.4 Clarifying the Problem

To bring The Problem into focus, it’s instructive to consider a simple response to it, which may
now sound tempting, but proves unsatisfactory. This simple response starts from the observation
that studies of approximate enumeration often involve participants enumerating collections of
items that are presented concurrently or all at once. For instance, in work by Xu and colleagues,
six-month-olds were habituated to collections of eight or 16 dots, where all the dots were presented

simultaneously on a screen. This leaves open that the mechanisms of approximate enumeration



might be unable to enumerate items presented sequentially, one-by-one. Since the 10-month-olds
in Feigenson et al.’s studies observed crackers being placed one-by-one into opaque buckets, you
might then think that the reason why non-subitizable values failed to be approximately enumerated
(and, thus, discriminated) is because approximate enumeration requires the simultaneous

presentation of all the elements being enumerated (see Spelke 2003: 298 for a related suggestion).

This simple suggestion might even seem well motivated. Wynn (1995) found that five-month-olds
subitize small collections that are sequentially placed behind a screen. For when infants saw two
objects get sequentially placed behind a screen, they looked longer when the screen was removed
to reveal three objects rather than two, despite marked difficulties five-month-olds have
performing 2:3 discriminations by approximately enumerating. However, in a similar study with
older children, Chiang and Wynn (2000) found that when eight-month-olds saw five objects get
sequentially placed behind a screen, in similar ways, they failed to approximately enumerate these
and were, thus, no more surprised when the screen was removed to reveal five objects or none.
Taken together, these findings might indicate that while infants can approximately enumerate
collections containing >3 items, this requires that items be presented simultaneously rather than

sequentially (see Hauser & Carey 2000 for related results in monkeys).

Alas, matters are not so simple. Infants can approximately enumerate collections when items are
presented one-by-one, and sequentially, at least under some conditions. In fact, we’ve already seen
this. When Lipton and Spelke (2003) replicated Xu and Spelke’s (2000) results with six-month-
olds, performance was identical when infants enumerated sequences of heard tones as opposed to
static collections of seen dots. Likewise, Wood and Spelke (2005) found that both six- and nine-
month-olds could approximately enumerate sequences of rabbit jumps, again with comparable
levels of acuity to when approximately enumerating static collections. Infants also show a three-

item limit in subitizing tasks when items are presented concurrently (Starkey & Cooper Jr. 1980).

This is not to deny that there might be something about the way collections are presented which
determines whether infants approximately enumerate, and thus discriminate, these when set size
is >3. Spelke (2022: 156) conjectures that this often has to do with the amount of time that items
are presented for. Specifically, she proposes that while infants approximately enumerate
collections quickly and in parallel, irrespective of whether items are presented sequentially or

concurrently, subitizing requires that arrays be presented slowly enough that each item is



selectively attended. As evidence, Spelke cites findings suggesting that when collections
containing <3 items are presented briefly, precluding such focused attention, they are
approximately enumerated and discriminated in accord with Weber’s Law (Starr et al. 2013;

Libertus et al. 2014).

The point to note is that even if this is so, it does not resolve The Big-Number Small-Number
Problem. Suppose Spelke’s hypothesis about presentation times is correct: subitizing requires that
individual items be selectively attended while approximate enumeration does not; and because
selectively attending to individual items takes time, infants have no choice but to approximately
enumerate small collections when presentation times are brief — subitizing is simply impossible
under these conditions. Fine. The trouble is: While this might explain why infants would
sometimes resort to approximately enumerating small collections, it does not explain why infants
would not approximately enumerate collections containing >3 items they would otherwise subitize
(e.g., in Feigenson et al.’s 2002). Think about it this way: If infants can flip from approximately
enumerating items to subitizing them when set-size is small and items are presented for a sufficient
duration that individual items can be selectively attended, why can’t they flip back to
approximately enumerating larger collections when a set-size of 3 is exceeded and subitizing fails?
Indeed, if Spelke’s hypothesis about presentation times is correct, this exacerbates matters. For if
approximate enumeration is so easy that it operates quickly and without even requiring focused
attention to enumerated individuals, it only looks more puzzling that this fast and efficient ability
cannot save the day in subitizing tasks when a set-size of three is exceeded, especially when the

items are presented simultaneously (Starkey & Cooper Jr. 1980).
3. Mutual ‘Inhibition’

The preceding remarks introduce The Big-Number Small-Number Problem. Boldly stated, we
want to know why infants fall to chance in subitizing tasks whenever one or more (non-empty)
target collection contains >3 items, even when these collections differ by a ratio that should be

easily discriminable via their well-known competence to approximately enumerate. What gives?

Perhaps the most prominent answer appeals to some form of inhibition. Exemplifying this view,
Spelke (2022) proposes that approximate enumeration and subitizing are subserved by distinct
modules, in something like Fodor’s (1983) sense of the term: there is, thus, a modular approximate

number system (ANS) and a distinct subitizing module, operating according to its own proprietary



data structures and algorithms. But, drawing on work by Hyde and Wood, she adds that these
systems are unlike sensory modules in that they are “mutually inhibitory” (2022: 170). So, while
the ANS and subitizing systems are distinct and independent psychological systems, Spelke
proposes that activation of the ANS or subitizing system inhibits the operations of the other. Such
inhibition is then seen to defuse The Big-Number Small-Number Problem, providing an “account

for all the puzzling findings” (169) under consideration.

Unfortunately, Spelke says little to clarify what ‘inhibition” amounts to in this context. Nor do
other proponents of this general suggestion (Hyde 2011). For our purposes this won’t do. If we are
to resolve The Problem in this way, ‘inhibition” must amount to more than (e.g.) an illicit re-
labeling of the fact that the ANS fails to facilitate discriminations in subitizing contexts. With this
in view, the present section will pose problems for two natural ways of fleshing out Spelke’s

inhibitory hypothesis, thereby motivating my recommended alternative.
3.1 Strong Inhibition

While Spelke says little to clarify what ‘inhibition’ amounts to in this context, she sometimes seems
to be tempted by a view which I call Strong Inhibition. On this view, activation of the subitizing
system straightforwardly switches off the ANS. Hence, when infants are tasked with choosing
between a four-cracker-collection and a one-cracker-collection they will be at chance if their
subitizing system has already been activated, since their subitizing system cannot process the four-
cracker-collection (this exceeds its three-item limit) and activation of the subitizing system turns
off the ANS — a system which could otherwise handle the 1:4 discrimination. Since similar points
apply whenever one or both collections exceed a set-size limit of three, Strong Inhibition offers to

defuse The Big-Number Small-Number Problem.

Indicative that this is what Spelke sometimes has in mind, consider that her main line of evidence
in support of her inhibitory hypothesis comes from Hyde and Wood (2011). Building on prior
studies showing that collections can be approximately enumerated, even when positioned such that
their individual constituents cannot be selectively attended (Intriligator & Cavanaugh 2001), and
prior studies finding common set-size limitations in subitizing and object-based-attention tasks
(Trick & Pylyshyn 1994), Hyde and Wood took EEG measures while adult subjects viewed small
collections, containing 1-3 items, which either could or couldn’t be allocated selective attention.

They found that when objects were sufficiently spaced and foveated, such that individual items



could be allocated focused attention, EEG responses were observed that are standardly associated
with subitizing. This was taken to suggest that such attentional deployment automatically elicited
subitizing. Meanwhile, when individual objects could not be selectively attended, responses were
comparable to those evoked in studies probing the neural underpinnings of the ANS. But crucially,
when participants selectively attended to the individual objects, and evoked EEG responses
associated with subitizing, Spelke (2022: 168) emphasizes that this was accompanied by “no
detectable neural response to changes in number” of a sort one would expect if participants were
engaging their ANS. It was as if attending to individual items, in a manner that automatically
evoked subitizing, switched off their ANS, just as Strong Inhibition recommends. Indeed, the lead
author of the cited study invites this interpretation, concluding that when subitizing is engaged

“approximate number representations are not formed” (Hyde 2011: 4).

Strong Inhibition might, therefore, seem to have a lot going for it. It offers to defuse The Big-
Number Small-Number Problem, and it does so in a manner that is supported by sophisticated

neuroscientific results. Despite these virtues, I think Strong Inhibition untenable.

If selectively attending to individuals, and subitizing them, literally switched off one’s ANS, as
Strong Inhibition recommends, it should be impossible to approximately enumerate the total
number of items populating an array when we selectively attend to a small number of individuals

within this larger array and subitize them. But this is plainly not so.

Consider Pylyshyn’s Multiple Object Tracking (MOT) paradigm. In standard MOT experiments,
participants are presented with non-subitizable collections of items (e.g., 10 black dots). At the
start of each trial, a subset of these is flagged as ‘targets’ to be tracked throughout the experiment
— for instance, target dots might flash on the screen. Having stopped flashing, all the items in the
array will begin moving in unpredictable ways for, say, 10secs. At this point, the items freeze, and

participants are tasked with reidentifying targets highlighted at the start of the trial.

A much-celebrated result is that adult humans typically succeed in tracking up to 3 or 4 targets in
such tasks after which performance falls apart (Pylyshyn 2007). This has been widely noted to
mirror the set-size limitations on subitizing (Scholl & Leslie 1999; Feigenson 2011; Spelke 2022).
And sure enough: participants in these tasks have been found to spontaneously subitize and
enumerate the items being tracked (Trick & Pylyshyn 1994). But if you try a MOT study for

yourself, notice that when you track and/enumerate 3-4 target objects, through focused object-



based attention towards these, you are not left oblivious to the approximate number of items
populating the entire array. In fact, you might feel that you can’t help but notice this. For instance,
you might be unsure whether the collection contains precisely ten or precisely 12 dots but be

confident that it doesn’t comprise 20.

This is not mere conjecture. Available evidence indicates that when selective attention is allocated
to individual items within a collection this actually improves ANS acuity. For instance, Cheyette
and Piantadosi (2019) used an eye tracker to show that the more dots that participants could
selectively fixate upon within a collection, the more accurately they could approximately
enumerate the collection. So, when participants selectively attend to individuals within a
collection, in ways that are seen to elicit subitizing (Trick & Pylyshyn 1994; Spelke 2022), this
does not suppress their ability to approximately enumerate that very collection, as Strong

Inhibition predicts — instead, it improves this.

With these points in view, it is worth revisiting Hyde and Wood’s study, noting that in hindsight
it did not test for the inhibition of the ANS by the subitizing system in any direct or obvious way.
For a start, it employed a dubious, and much critiqued form of “reverse inference” (Poldrack 2006).
For even if activation of the subitizing system and its underlying neural machinery was shown to
inhibit neural machinery associated with the ANS (a point which may, itself, prove difficult to
assess given well-known difficulties interpreting EEG results plus the fact that EEG only probes
shallow layers of the brain, leaving much of the cortex unmapped [Grech et al. 2008; Srinivassan
1999]), Hyde and Wood’s study did not test whether participants retained an ability to
approximately enumerate collections when subitizing; e.g., by asking them to concurrently
estimate or discriminate a collection of dots whilst subitizing was engaged. Of course, in the
absence of contravening evidence, Hyde and Wood’s results might still motivate the thought that
they would not (see: Machery 2014). But we have now seen that available behavioral results seem
to trump this suggestion. Thus, I submit that Strong Inhibition should be rejected. It is
undermotivated by the only studies that are seen to support it, and it is undermined by available

evidence (at least in adult subjects, akin to those tested by Hyde and Wood).
3.2 Weak Inhibition

Strong Inhibition seems to be too strong. Nevertheless, one might embrace a modest version of the

inhibitory hypothesis, which I call Weak Inhibition. Given Weak Inhibition, activation of the



subitizing system does not straightforwardly switch off the ANS, but it reduces ANS acuity,
causing performance to “suffer” (Spelke 2022: 169). In the tasks under consideration, this might

prevent infants’ ANSs from facilitating discriminations we would otherwise expect them to.

One problem with this proposal is that even Weak Inhibition is undermined by the above studies.
For when adults deploy focused attention towards individuals within a collection, we have now
seen that this improves ANS acuity, rather than reducing it (Cheyette & Piantadosi 2019). Insofar
as such focused attention is seen to automatically elicit subitizing (as Spelke [2022: 169] and Hyde
& Wood [2011] maintain), and the system is seen to work in broadly homologous ways across

development (Carey, 2009; Clarke et al. 2025) this calls even Weak Inhibition into question.

Bracketing these concerns, Weak Inhibition might find support in developmental studies. Recall
Spelke’s suggestion that while the ANS operates rapidly (enumerating collections before focused
attention can be paid to the individuals these comprise), subitizing often requires that items be
observed for longer periods of time (such that focused attention can be paid to individual items
within a collection). As evidence for this, Spelke notes that when small collections containing <3
items are only presented briefly, they are often approximately enumerated, imprecisely and in
accord with Weber’s Law, rather than being precisely subitized (Brannon 2002; Wood & Spelke
2005). What she neglects to mention, is that when infants compare subitizable and non-subitizable
quantities in these studies, the ratios between these collections must be larger for reliable
discriminations to obtain. For instance, Cordes and Brannon (2009a; 2009b) found that when
seven-month-olds approximately enumerated and proceeded to distinguish subitizable quantities
from non-subitizable quantities, these quantities needed to differ by a ratio of 1:4, under conditions
where the discrimination of two non-subitizable quantities otherwise required a mere 1:2
difference. Prima facie, ANS acuity was (roughly) halved when discriminating collections that
crossed the subitizing threshold, perhaps due to engagement of the subitizing system (Cordes &
Brannon 2009a employed a habituation paradigm, effectively ensuring that collections were
presented for prolonged periods, which should activate the subitizing system on Spelke’s

hypothesis about presentation times).? So, while activation of the subitizing system may not switch

* This might be a slight overstatement, since Cordes and Brannon did not test 1:3 discrimination across the subitizing
threshold (e.g., 2:6). I’ll put this to one side since acknowledging this only worsens the problems for Weak Inhibition.



the ANS off (pace Strong Inhibition), this suggests that ANS acuity is lowered when subitizable

collections are involved and the subitizing system is engaged (ibid.).

What’s crucial to note is that inhibition of this weakened sort no longer resolves The Big-Number
Small-Number Problem. Since infants continue to consistently perform 1:4 discriminations across
the subitizing threshold using their ANS, despite prolonged presentation times, it remains unclear
why infants consistently failed to discriminate one cracker from four crackers in (e.g.) Feigenson
and Carey (2005) by using their ANS. Indeed, this point is exacerbated when we consider that the
infants in Feigenson’s studies were older (ten-months-old) and would, thus, be expected to
discriminate harder ratios than the seven-month-olds tested in Cordes and Brannon’s (Libertus &
Brannon 2010). While there might be other ways to flesh out Weak Inhibition, these problems

motivate consideration of a fresh approach to resolving The Big-Number Small-Number Problem.
4 An Independently Motivated Solution

I have raised concerns with two formulations of the inhibitory hypothesis. I’ll now suggest that a
neglected solution to The Big-Number Small-Number Problem presents itself when we avail
ourselves of three independently motivated observations about the ANS and subitizing system that

more-or-less all parties in this debate already accept. That:

a) these systems’ outputs differ in format,
b) these outputs compete for space in visual working memory, and
c) there are cues of some sort which determine whether a small collection is discriminated by

the subitizing system or the ANS.
Let us consider these claims in turn.
4.1 Format

In discussions of number cognition, it is just about universally expected that approximate number
representations are couched in an analog format. In saying this, we needn’t assume that these
representations are continuous (Beck 2015; c.f. Gallistel & Gelman 2000), nor that they conform
to Kosslyn’s (1980) “picture principle” (Clarke 2022; c.f. Carey 2009). What’s crucial is that
number is represented by a magnitude in the head (Peacocke 2019), which functions to mirror the
quantities being represented, and does so by varying as a monotonic function of these (Maley 2011;

Beck 2015). To conceptualize this, approximate number representations can be thought of as akin



to the analog representations found in mercury thermometers which represent temperatures by
having mercury levels vary as a monotonic function of these (i.e. having mercury levels serve as

analogs of their content).

Beyond the fact that this analog format is evinced by our best neuroscience (Roitman et al. 2007,
Nieder 2016), a key motivation for positing analog representations of this sort, has been the
observation that if the ANS’s representations are couched in an analog format, this could explain
the ANS’s conformity to Weber’s Law given how noise naturally accumulates in analog systems

(Meck & Church 1983).

To illustrate, imagine keeping count of the goals scored at a football match by pouring one cup of
water into a bucket A whenever team A scores a goal and a separate cup of water into a bucket B
whenever team B does. Under these conditions, you might expect that the bucket with the most
water at the end of the game will correspond to that of the winning team. However, if each cupful
being poured varies in volume, then this noise could lead to systematic “errors” of a sort that would
conform to Weber’s Law. For instance, if each cupful poured into bucket A contains 200ml of
water and each cupful poured into bucket B contains 300ml of water, then the bucket with the most
water will reliably correspond to that of the winning team just in case the winners win by 2 goals
to 1, but not by 3 goals to 4, irrespective of the absolute numbers of goals involved. More generally:
accuracy will now be predicted by the ratio between the numbers of goals scored. Since noise of
some analogous sort is more or less inevitable in real-world analog systems, like those
implemented in the brain, a prevailing orthodoxy has been that Weber’s Law results from the
analog format of the representations underwriting ANS performance plus the inevitable patterns
of noise that arise in the brain’s construction of its sensory representations (Beck 2019; Beck &

Clarke forthcoming).

What’s crucial here is that this should compel us to hold that subitizing encodes numerical
information in a different format entirely. For if one holds that the format of ANS representations
implies the ANS’s conformity to Weber’s Law, then the fact that subitizing does not conform to
Weber’s Law implies that its representations must somehow differ in how they make numerical
information “explicit” and “accessible” (Marr 1980: 20-22). For instance, if the subitizing system
represents small numbers precisely (Margolis 2020), one might conjecture that these are couched

in a non-analog digital format — e.g., that these are digital symbols, ONE TWO and THREE, in



the language of thought (Quilty-Dunn et al. 2023). Alternatively, one might deny that subitizing
involves the explicit representation of numerical content and instead hold that the discriminations
performed in subitizing tasks result from numerical information that is merely implicit in the
number of individuals explicitly represented (Feigenson et al. 2004). Either way: Subitizing
representations cannot encode numerical information in the same format as approximate number
representations if approximate number representations have a format which implies the ANS’s
conformity to Weber’s Law. This is for the simple, and uncontroversial, reason that subitizing does
not conform to Weber’s Law. Thus, I draw Interim Conclusion 1 — ANS and subitizing

representations encode numerical information in different formats.
4.2 No Comparison Without Translation

While Interim Conclusion 1 is relatively uncontroversial, not least among those engaged with The
Big-Number Small-Number Problem (Feigenson et al. 2004; Spelke 2022; Carey 2009; Brannon
2002), it suggests that the numerical information that the ANS and subitizing systems encode
cannot be directly compared without some intervening process of translation. Just as one will not
be able to identify which of two symbols represents a larger number if one number is represented
using a system of tally marks and the other using Arabic numerals, unless one possesses the
knowledge or ability to translate these into a common code, the numerical information that ANS
and subitizing representations carry will be incomparable without some capacity to translate this
information into a common format. This is particularly clear if — as is often assumed —
computations over these representations must ultimately be sensitive to their syntactic, or non-
semantic properties (Fodor 1979). Thus, I proceed to draw Interim Conclusion 2 — If [Interim
Conclusion 1] is accepted, then the contents of ANS and subitizing representations cannot be

contrasted without an intervening process of translation.
4.3 Resolving The Problem

Once again, Interim Conclusion 2 is largely uncontroversial (see Butterfill & Sinigaglia [2014]
and the literature it spawned). Nevertheless, it has underexplored implications for The Big-Number
Small-Number Problem. For insofar as the numerical information encoded by the ANS and the
subitizing system differs in format (Interim Conclusion 1), we can now see that an infant in
Feigenson et al.’s studies will not be able to directly compare the quantities associated with their

representation of a four-cracker collection and their representation of a one cracker collection if



the former has been represented by their ANS in one format and the latter representation has been
encoded by their subitizing system in another — at least not without an extraneous process of
translation between these representations (Interim Conclusion 2) which we currently have little
reason to think infants possess.* Indeed, similar points will apply no matter what these
representations represent (compare Feigenson et al. 2004; Margolis 2020; Clarke & Beck 2021),

and hence no matter the ratio between their contents.

This does not quite resolve The Big-Number Small-Number Problem, however. The preceding
points allow us to see why an approximate number representation of FOUR (or FOURISH) and a
subitizing representation of a one item collection will be incomparable for infants in Feigenson et
al.’s studies. Nevertheless, an appeal to the diverging formats of approximate enumeration and
subitizing does not explain why infants would systematically fail to discriminate four crackers
from one cracker in Feigenson’s experiments. This is because it does not yet explain why an infant
in such studies wouldn’t construct approximate number representations of both quantities — ONE
(or ONEISH) and FOUR (or FOURISH), respectively — in a common ANS format and then
proceed to compare these. After all, we’ve seen that small collections can be approximately

enumerated (e.g., Brannon 2002; Cordes & Brannon 2009a; 2009b).

Fortunately, a solution to The Problem presents itself when the preceding remarks are considered

in tandem with two final observations:

Firstly, utilizing ANS and subitizing representations requires working memory. No one doubts this
— i.e., that there are limits on the amount of visual information that can be stored and accessed by
an infant at a given time for use in their reasoning or action guidance. What’s notable is that, as a
matter of empirical fact, current research indicates that infants are limited to holding no more than
~3 objects/collections in working memory across a range of tasks that are relevant to our concerns

in this essay.’ For instance, infants typically only succeed in tracking and retaining information

4 This contrasts with adults, who plausibly overcome The Big-Number Small-Number Problem by mapping the outputs
of subitizing (Trick & Pylyshyn 1994) and approximate enumeration (Sullivan & Barner 2013) onto lexical number
concepts, couched in a common format, apt for immediate comparison (see Spelke 2003 for a related conjecture).

5 There are different views on the architecture of working memory. Some regard it as a horizontal faculty, such that
(e.g.) verbally encoded information and visually encoded information compete for space within a single finite resource
(Atkinson & Shiffrin 1968). Others argue for the functional independence of (e.g.) visual and verbal working memory,
holding that each type of working memory stores content in an independent memory store (Shah & Miyake 1996).
Still others endorse the functional independence of the memory stores associated with (e.g.) visual and verbal working
memory but hold that memory storage within either store is constrained by domain general resources, common to
visual and verbal cognition (Baddeley 2000; Kane et al. 2004). I take no stand on these matters. What’s important for



about <3 Spelke objects at any given time (Feigenson & Carey 2003). Likewise, in approximate
enumeration and subitizing tasks infants can only compare information about <3 collections
simultaneously, after which performance sharply declines. For instance, Zosh et al. (2011) found
that infants detect changes in number that pertain to either one of two observed subsets or the
superset they comprise, but they lose track of this when more than two subsets plus a superset must
be tracked simultaneously. Moher and Feigenson (2011) extended these results, showing that this
three-set-limit remains constant, irrespective of whether the subsets of a collection are demarcated
by color or shape. Meanwhile, Halberda et al. (2006) found related capacity limits in adults, with
related results observed in the subitizing literature. For instance, Feigenson and Halberda (2004)
showed that infants can exceed the 3item set-size limit on subitizing when collections are easily
chunked into less than 3 subitizable sets (e.g., such that a collection of four could be represented

as two collections of two).

In each of these cases, the representations involved seem to possess an object-attribute structure
(Clarke 2023). Each representation is complex, picking out an individual (be it an isolated Spelke
object, as in classic work on object files [Green & Quilty-Dunn 2021], or a collection apt to be
subitized or approximately enumerated in the studies under consideration [Feigenson 2011]) such
that information in various formats can then be attributed to these individuals (be it information
about the kind of object being referenced, the individuals it comprises, or the approximate number
of items that it contains — ibid.). Beyond the fact that this complex object-attribute structure allows
that distinct types of information be bound and updated with respect to a single individual (e.g.,
average dot size and/or approximate number), indicating that the collection is not defined for the
visual system by any of these specific attributes (Clarke 2023; compare Pylyshyn 2003), this is
motivated by the three-item limit described above. For this pertains (most immediately) to the
number of objects/collections that can be visually referenced at a given moment. Thus, it is as if
there are just three slots available in infants’ visual working memory, and each slot is clogged up
whenever the infant thinks about an item — be it a Spelke object, a subitizable collection, or an

approximately enumerable ensemble (Feigenson et al. 2011) — irrespective of what information (if

my argument is simply that subitized visual information competes with approximately enumerated visual content for
space within a single finite memory store. All the abovementioned views predict this.



any) is then attributed to this individual. Thus, I draw: Interim Conclusion 3 — Infants can hold

information about no more than three collections in working memory at once.

This does quite resolve The Big-Number Small-Number Problem. Consider the case in which an
infant who discriminates two crackers from three crackers, falls to chance discriminating a one-
cracker collection from a four-cracker collection. As noted, this is puzzling. For even if the
subitizing system is unable to attribute the relevant numerical information to the four item
collection (because the infant subitizing system has a three-item limit on collections it can quantify
or process), it remains unclear why infants could not use their ANS to perform the comparison,
producing a representation of approximately one cracker for one collection which is then easily
discriminated from an approximate number representation of four(ish) crackers in the other — after

all, 1:4 is miles from 1:1.

The point to note is that, given Interim Conclusion 3, there simply will not be space for infants to
simultaneously encode (i) an approximate number representation of the one-cracker collection, (ii)
an approximate number representation of the four-cracker collection, (iii) a subitizing
representation that refers to the one-cracker collection, and (iv) a subitizing representation that
refers to the four-cracker collection. Only three of these four representations will be able to fit into

the available slots that infant visual working memory provides. But which three?

At this point, it is worth reminding ourselves that there simply must be cues which reliably
determine whether small collections are discriminated using the ANS or subitizing system.
Without these it would be hard to see why infants consistently subitize in Feigenson et al.’s tasks,
and why they consistently approximately enumerate otherwise similar collections in studies

conducted by the likes of Cordes and Brannon.

Admittedly, we do not have a clear understanding of what these cues are. Nevertheless, plausible
proposals have been advanced. For instance, Spelke thinks this often has to do with presentation
times: when collections/items are presented briefly, infants will tend to approximately enumerate
these in accord with Weber’s Law (and thus discriminate one item from four, just as reliably as
they discriminate two items from eight). Meanwhile, she thinks longer presentation times dispose
infants to subitize the collections (hence why they fail to discriminate collections that exceed the
subitizing threshold under these conditions, as when they fail to discriminate one item from four

[Feigenson & Carey 2005]).



Admittedly, Spelke’s appeal to presentation times can’t be the whole story. For a start, it doesn’t
explain why infants sometimes approximately enumerate small quantities in habituation studies
(such as those employed by Cordes & Brannon 2009a) which typically involve longer presentation
times than the subitizing studies run by Feigenson and colleagues (S. Cordes pers. comm.). It also
doesn’t explain why Cordes and Brannon consistently found that ratios need to be significantly
larger (e.g., 1:4 rather than 1:2) for seven-month-olds to discriminate collection sizes that cross
the subitizing threshold (but see Section 3.2) — a point which leads Cordes and Brannon (2009a)
to suppose that ratio size may be a further cue that disposes approximate enumeration over
subitizing in the tasks under consideration. In any case, it’s important to stress that whatever cues
end up determining performance in these studies, they need not be construed as cues which
determine which system is activated in each context and which is switched off (pace Strong
Inhibition). Instead, these cues can be construed as determining which systems’ representations
are prioritized in the three slots that infant working memory provides. Thus, when items are
presented slowly, or in ways which otherwise dispose collections to be subitized, we might suppose
that subitizing representations are just preferentially encoded into working memory over
approximate number representations of the same collections. This does not require us to posit any
further sense in which the ANS and subitizing systems suppress or inhibit one another’s operations.

This is a welcome result, I think, since alternatives run afoul of the concerns glossed in Section 3.

To see how this offers to resolve The Big-Number Small-Number Problem, consider Feigenson et
al.’s cracker experiments one last time: In these studies, infants’ subitizing systems will have tried
to represent the collections and, due to the ways in which the items were presented, these will have
been preferentially encoded into two of three available slots that infant working memory provides.
Thus, when infants observed two crackers being placed into one bucket and three crackers being
placed into the other, a subitizing representation of the two-cracker collection and a subitizing
representation of the three-cracker collection will have been stored in working memory, occupying
two of the three available slots therein. Since both collections contain a subitizable quantity of
items, this enabled the infants to then discriminate the collections and to reliably choose the three-

cracker collection over the two-cracker collection.

By contrast, consider a situation in which infants observed one cracker being placed into one
bucket and four crackers into the other. Here, they would fail to discriminate these quantities.

Provided that these collections were presented in analogous ways, the subitizing system would still



try to represent the collections and these representations would still be preferentially encoded into
working memory. These subitizing representations would, thus, continue to occupy two of three
available slots therein. However, in this case, the subitizing system would be unable to attribute
the information that is required to encode the quantity associated with the four-cracker collection
(four-crackers exceeds its three-item limit). Thus, these representations would not enable a 1:4
discrimination. But while the ANS might have stepped in to facilitate this discrimination (given
the large ratio size), the prioritization of subitized content in two of the three available working
memory slots would only leave one additional slot available. So, even if this remaining slot
allowed for an approximate number representation of the otherwise in-discriminable four-cracker
collection to be encoded and utilized by the infants, this single representation would not suffice to
facilitate a comparison among the collections if its numerical content were couched in a distinct
format; at least not without some intervening means of translating between these diverging formats

(Interim Conclusions 1 & 2).

Since similar points apply to all the problem cases under consideration — including cases in which
infants must discriminate between a three-cracker collection and a four cracker collection, a two-
cracker collection and a four cracker collection, or a three-cracker collection and a six cracker
collection — I propose that The Big-Number Small-Number Problem is resolved when we
recognize that (i) the ANS and subitizing systems encode numerical information in different
formats, that (ii) their representational outputs compete for space in working memory, and that (iii)
there are cues determining whether discriminations are facilitated by the ANS or subitizing
systems in the tasks under consideration, at least once (iii) is interpreted as a claim about what

information is prioritized in working memory.
4.4 An Objection

One worry with my proposal might be that it requires us to hold that when a >3 item collection is
presented in ways that cue subitizing representations to be preferentially encoded in working
memory, a representation of the >3 item collection will somehow remain stored and prioritized in
working memory (clogging up one of the available slots) over and above usable approximate
number representations of the same collection. This might sound bizarre, if one assumes that the
subitizing system stops representing the collection entirely whenever that collection exceeds the

subitizing threshold. For on this view, there will be no such thing as an infant’s subitizing



representation which represents a four-item collection. When the subitizing threshold of three is

crossed, the representation simply ceases to exist.

This cannot be the right way to think about subitizing, however. If a subitizing representation that
refers to a four-cracker collection was not held in working memory at all, infants would reliably
select buckets containing one cracker over buckets containing four. Why? Because the subitizing
system would represent the one cracker bucket as containing one cracker while failing to represent
the four-cracker collection at all. But, as we’ve seen, this prediction is not borne out (Feigenson

& Carey 2005). Infants are at chance choosing between subitized collections of one and four.

You might wonder why this would this be. What would cause infants to be at chance choosing
between collections of one and four in these studies? The answer, I suggest, stems from my
suggestion that both subitizing and ANS representations have an object-attribute structure. Like
object-files, they pick out perceptual objects — in this case, sets or collections rather than Spelke
objects — before allowing syntactically independent symbols or representations (carrying
numerical information) to then be attributed to these (either explicitly [Margolis 2020; Clarke &
Beck 2021] or implicitly in the number of individuals these sets are represented as containing
[Feigenson et al. 2004]). But since the structure of these representations is complex, and the three
available slots in infant visual working memory is clogged up by the elements of these
representations which pick out objects (the sets or collections) rather than the information that is
then attributed to these, we should expect a subitizing representation to continue to consume a slot
in visual working memory when the subitizing threshold is exceeded. Why? Because, under these
conditions, there will still be an object (collection) being referred to; it’s just that the subitizing
system will not be able to attribute the relevant numerical information to this object. In this way,
the element that is stored in working memory will effectively say “there is a collection there” but
no quantitative information is attributed to it. So, when this gets compared to a separate subitizing
representation which says “there is a collection there and it contains one item” these
representations will underdetermine which collection contains more. By contrast, when a desirable
four-item collection is picked out by an object-specifying element which says “there is a collection
there” this collection will be chosen preferentially over an empty set, which infants have no reason
to have ever treated as collection-involving to begin with. Consistent with this prediction,

Feigenson and Carey (2005) found that while 10month-olds fail to perform 1:4 discriminations in



subitizing tasks, they reliably perform 0:4 discriminations under comparable conditions, readily

choosing a four-cracker collection over a bucket that is left empty.
S Future Directions

This paper has introduced and clarified The Big-Number Small-Number Problem before
recommending a novel solution to it. My solution is simple in that it turns on independently
motivated claims that are already accepted by most parties in these debates. The basic idea is that,
given the limited number of slots that are available in infants’ visual working memory there will
not be space to encode two approximate number representations (pertaining to collections in and
outside the subitizing range) if visual cues lead the visual system to preferentially encode two
subitizing representations in working memory — this would require four slots, where infant
working memory merely provides three. And while the storage of two prioritized subitizing
representations might leave one slot free for an ANS representation to squeeze in, this won’t
facilitate a content-respecting comparison with the contents of subitizing representations stored in
working memory if these are couched in different formats, since content-respecting comparisons

across formats require some (prima facie lacking) mechanism of translation.

This conjecture is at the mercy of empirical fortune. Since my hypothesis predicts that ANS and
subitizing representations compete for space in working memory, it predicts when 1:4, 2:4 or 3:6
discriminations will be possible for infants. For instance: It predicts that since ANS and subitizing
representations compete for space in working memory, subitizing and ANS tasks can be pursued
in tandem, provided that no more than three collections are considered at once. Thus, an infant will
not discriminate a subitized collection of one from a subitized collection of fwo while prioritizing
two approximately enumerated collections, but they might approximately enumerate a single large

collection while simultaneously comparing two subitizable values.

There are also philosophical upshots of my proposal. I’ve argued that subitizing and ANS
representations have a complex object-attribute structure, akin to an object file (Green & Quilty-
Dunn 2021). My conjecture thereby builds upon recent philosophical work exploring the
compositional structure of perceptual representations (Lande 2021) and representations with an
analogue format (Clarke 2023; Lande 2024). What’s distinctive is that, here, the objects picked

out are sets or collections, rather than bounded “middle-sized dry goods”.



On the conjecture advanced, there then needs to be an architectural, syntactic or semantic
difference between the representations of collections picked out through subitizing and the
representations of collections apt for approximate enumeration. This is because, on my account,
the object-specifying element involved in a subitizing representation cannot have approximate
number content freely attributed to it once the subitizing threshold is exceeded — something must
prevent this, suggesting that the referential elements involved in subitizing and approximate

enumeration somehow differ in kind (see Feigenson 2011).

No less importantly, however, the object-specifying referential elements in these representations,
cannot be entirely devoid of content or significance for the infants who deploy them. Thus, unlike
the sub-representational fingers of instantiation (FINSTs) that Pylyshyn and others posit to explain
performance in MOT paradigms — symbols which are said to function as bare demonstratives,
lacking content or accuracy conditions entirely (c.f. Echeverri 2017) — the set-representing
elements of subitizing representations enable infants to appreciate that it is a sef or collection being
picked out, which may or may not contain more items than a separate collection of one or two or
three. For as we saw in Section 4.4, this is what prevents infants from reliably choosing subitizable
collections (e.g., of 1) over non-subitizable collections (e.g., of 4) in Feigenson’s tasks, and instead
leaves them at chance when choosing between one cracker and four. At the same time, it enables
infants to systematically choose non-subitizable collections (e.g. of four) over empty sets (e.g., an
empty bucket —see Section 4.4). So, beyond the fact that a complete account of perceptual structure
may need to recognize that distinct symbols are employed when sustaining visual reference
towards Spelke objects, subitizable sets and approximately enumerable collections (Feigenson
2011), my solution to The Big-Number Small-Number Problem suggests that these symbols need
to be richer in content or semantic significance than purely demonstrative accounts of visual

reference assume (e.g., Pylyshyn 2003).
(Main text, inc. footnotes and in-text references: 8,687 words)
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Figure 1. Based on a quick glance, can you tell whether panel A or panel B contains more
squares? What about panels B and C?
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Figure 2. Feigenson et al. (2004) present the results of numerous subitizing tasks in which
infants fall to chance when discriminating (non-empty) collections that contain >3 items.
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