
 
 
 

The Big-Number Small-Number Problem in Infant Number 
Cognition 

 
Abstract: In subitizing tasks, infants accurately discriminate small collections, up to a set-size 
of ~3, after which performance falls to chance. It remains unclear, however, why performance 
consistently falls to chance under these conditions given that infants possess an equally well-
attested capacity to approximately enumerate larger collections. I call this The Big-Number 
Small-Number Problem. This paper clarifies The Problem, notes that it is exacerbated by 
influential ways of thinking about infant numerical cognition and argues that existing “solutions” 
to The Problem are unsatisfactory. It then develops an improved solution, which turns on 
independently motivated claims about the format of the representations involved and the 
signature limits of infant working memory. Beyond generating testable predictions, this 
improved solution has ramifications for the architecture of numerical cognition, the structure of 
perceptual representations, and the ways in which perceptual states refer. 

 

1. Introduction  

Infants can approximately enumerate large collections, albeit imprecisely and in accord with 

Weber’s Law, such that discriminations are ratio-sensitive (Izard et al. 2009; Xu & Spelke 2000). 

Infants can also subitize, or precisely discriminate small collections, but only when these contain 

less than ~3 items, after which performance falls to chance (Feigenson et al. 2004). What’s unclear 

is why subitizing would consistently fall to chance under these conditions, given that infants 

possess the abovementioned ability to approximately enumerate larger collections. I call this The 

Big-Number Small-Number Problem. This paper aims to clarify The Problem and then resolve it.  

2. The Big-Number Small-Number Problem 

The Big-Number Small-Number Problem arises because human infants possess myriad numerical 

abilities, distinguished by idiosyncratic signature limitations. This essay focusses on their abilities 

to approximately enumerate large collections and subitize small collections.1 In this opening 

section, I clarify these abilities, such that readers can appreciate an apparent tension between them.  

 
1 Infants possess a capacity to precisely enumerate large collections in some contexts (Clarke 2025) and for 
approximate rational number representation (Denison & Xu 2014; Qu et al. 2024). These further capacities are 
orthogonal to The Problem considered here, though related issues might arise when considering their interrelations. 



 

2.1 Approximate Enumeration 

‘Approximate enumeration’ concerns a capacity to perceptually discriminate (sometimes quite 

large) numerical quantities without counting. This ability is imperfect. Specifically, accuracy 

conforms to Weber’s Law: when we approximately enumerate two collections, the ease and 

reliability with which we discriminate these is predicted by the ratio between them rather than their 

absolute difference in number. Ten dots are easier to discriminate from eight dots than twelve, even 

though eight and twelve differ from ten by the same absolute amount. What matters is the ratio 

between the quantities – the further from 1:1, the better. 

Take Figure 1. Without explicitly counting, you will find it easier to identify that panel B contains 

more squares than panel A than that panel C contains more squares than panel B. For instance, you 

might feel more confident that B>A than C>B or find yourself unsure as to whether C>B. The 

surface area, brightness, and convex hull of all three collections can be controlled for without 

affecting this basic result. The key difference is that the ratios between the numerical quantities 

varies, with the ratio of items in panels B to C closer to 1:1 than in panels A to B.  

<Insert Figure 1> 

What’s important for our purposes is that analogous capacities are found in young infants, even 

neonates (Izard et al. 2009; de Hevia et al. 2014). Here, researchers have taken care to show that 

performance involves a sensitivity to numerical quantities, rather than lower-level properties of 

perceived collections (Clarke & Beck 2021). Moreover, diverse brain imaging methods indicate 

that these congenital abilities are underwritten by the same neural mechanisms employed by adults 

when they approximately enumerate (Cantlon et al., 2006, Hyde et al, 2010). In each case, 

performance is marked by a common signature limit – accuracy conforms to Weber’s Law and is 

ratio-dependent, likening these infant abilities to those found in adult humans when they 

approximately enumerate. 

Take Xu and Spelke (2000). These researchers found that when six-month-olds habituated to 

collections of eight dots, they dishabituated to collections containing four dots or 16 dots, but not 

collections containing 12 dots. Likewise, six-month-olds who habituated to collections of 16 dots, 

dishabituated to 32 or eight-dot arrays, but not collections containing 24 or 12. Since non-



numerical confounds, like surface area, brightness, and convex hull were controlled for, it was 

concluded that the infants were enumerating the numbers of dots in each collection, but only 

approximately, such that discriminating two collections required them to differ in number by a 

ratio of at least 1:2.  

Follow up studies have since confirmed these results and shown that performance improves with 

age. For instance, Lipton and Spelke (2003) replicated the abovementioned findings in six-month-

olds and found that performance was identical irrespective of whether infants discriminated seen 

dots or heard tones. They also found that nine-month-olds can perform harder 2:3 discriminations 

with comparable reliability. Both results replicate. Indeed, Libertus and Brannon (2010) replicated 

both results using a novel change detection paradigm and found that individual differences in task 

performance remained constant from one testing session to the next.  

2.2 Subitizing 

Where ‘approximate enumeration’ concerns a capacity to enumerate and discriminate sometimes 

rather large collections (e.g., collections of eight, 16 or 32 items) imprecisely and in accord with 

Weber’s Law, ‘subitizing’ concerns a capacity to precisely discriminate small collections, up to a 

set-size of ~3 or 4. 

Like approximate enumeration, subitizing is observed in adults. W.S. Jevons (1871) found that 

humans are remarkably accurate at enumerating collections of 1-4 beans quickly tossed into a pan. 

More recently, researchers have confirmed these results, finding that humans spontaneously 

enumerate sets of ≤4 attended items quickly (40-100ms/item) and accurately, even when prevented 

from counting, while the enumeration of larger collections, outside this “subitizing” range, is slow 

(250-350ms/item) and error prone (Trick & Pylyshyn 1994). What’s important is that, once again, 

analogous abilities are found in young infants – although, here, the set size limit is smaller (~3 

rather than ~4 –) and there is debate as to whether this involves infants explicitly representing 

numerical quantities (Margolis 2020).2   

Consider Feigenson et al.’s (2002). In these tasks, researchers found that 10-month-old infants 

readily distinguish one item from two items, and two items from three items, but are at chance 

discriminating three items from four items, two items from four items, or three items from six 

 
2 Those who deny this often prefer the term “parallel individuation” to “subitizing” when labelling these abilities 
(Feigenson et al. 2004). Nothing I’ll say turns on this. 



items. A follow up study even found that they are at chance discriminating one item from four 

items (Feigenson & Carey 2005). So, while ten-month-olds reliably chose an opaque bucket into 

which two crackers had been sequentially placed over an opaque bucket containing one cracker, 

and an opaque bucket into which three crackers had been sequentially placed over an opaque 

bucket containing two crackers, they were at chance choosing between an opaque bucket 

containing six crackers and an opaque bucket containing three crackers or an opaque bucket 

containing four crackers and an opaque bucket containing just one. Bracketing the fact that infants 

reliably chose buckets with four crackers over empty buckets, it was as if 10month-olds completely 

lost track of the quantities involved whenever one or both was larger than three.  

<Insert Figure 2> 

Once again, these results replicate. Matching results are found in manual search tasks (Feigenson 

& Carey 2003), tasks involving the discrimination of actions (Wynn 1996) or syllables (Bijelac-

Babic et al. 1993), and in violation of expectation experiments (Wynn 1992). What’s striking, is 

that performance across all these tasks falls to chance when infants must discriminate non-empty 

collections containing >3 items, with the ratios among collections failing to predict performance 

– thus, 3:6 and 1:4 discriminations fail, while 2:3 discriminations succeed, despite 2:3’s relative 

proximity to 1:1. This implies that performance in these tasks is not underwritten by infants’ 

abilities to approximately enumerate. Instead, infants are seen to be drawing on a distinct 

psychological system, which facilitates precise discriminations but only among collections 

containing three items or less (Feigenson et al. 2004). In other words, the signature limits on 

performance in these tasks has been seen to implicate distinct subitizing mechanisms, operating 

according to their own psychophysical profile.  

2.3 The Problem 

In short: Approximate enumeration concerns an ability to represent and discriminate (sometimes 

quite large) numerical quantities, albeit imprecisely and in accord with Weber’s Law. Meanwhile 

subitizing concerns an ability to precisely discriminate small collections, but only when these 

contain less than ~3 items. But while both abilities are operational in young human infants, it’s 

non-obvious how to reconcile their signature limitations.  

In studies evincing infant subitizing, infants succeed in precisely discriminating sets of one from 

sets of two and sets of two from sets of three. But recall: performance falls to chance when they’re 



tasked with discriminating (non-empty) collections in which one or more contains >3 items. Thus, 

it’s not that performance merely deteriorates when one or more collections contain >3 items. 

Rather, performance falls off a cliff (Figure 2). For instance, ten-month-olds tested by Feigenson 

et al. fell to chance when choosing between buckets containing two and four crackers (a difference 

of 1:2), or when choosing between buckets containing one and four crackers (a difference of 1:4). 

Indeed, this general tendency to catastrophically fail in subitizing tasks whenever (non-empty) set 

sizes exceed a threshold of three motivates the received view that subitizing is operational in 

human infants, and subject to its distinctive set-size limitations (Feigenson et al. 2004).  

What’s puzzling is that infants can approximately enumerate larger collections. For instance, six-

month-olds readily discriminate collections of four from eight, collections of eight from 16, or 

other quantities that differ by at least 1:2 (Xu & Spelke 2000; Libertus & Brannon 2010). This is 

so, even when tested on a small number of trials – when more trials are run, harder ratios can be 

discriminated above chance (Halberda 2016). Indeed, such capacities are present at birth (Izard et 

al. 2009) and increase in acuity throughout development (Libertus & Brannon 2010). Accordingly, 

the 10month-olds tested in Feigenson et al.’s (2002) should have been better approximate 

enumerators than the six-month-olds tested by Xu and Spelke (2000). But given this capacity to 

approximately enumerate larger collections, outside the subitizing range, why would performance 

fall to chance in subitizing tasks whenever one or other collection contains >3items? Even if there 

is a three-item limit on what can be handled by infants’ subitizing system, and this is explained by 

the system’s basic architecture or algorithms (Feigenson & Carey 2005), why wouldn’t infants 

discriminate small collections from large collections outside the subitizing range, imprecisely yet 

significantly above chance, by approximately enumerating them, at least when the collections 

differ by a suitably large ratio – e.g., 2:4 or 1:4? This is The Big-Number Small-Number Problem.  

2.4 Clarifying the Problem 

To bring The Problem into focus, it’s instructive to consider a simple response to it, which may 

now sound tempting, but proves unsatisfactory. This simple response starts from the observation 

that studies of approximate enumeration often involve participants enumerating collections of 

items that are presented concurrently or all at once. For instance, in work by Xu and colleagues, 

six-month-olds were habituated to collections of eight or 16 dots, where all the dots were presented 

simultaneously on a screen. This leaves open that the mechanisms of approximate enumeration 



might be unable to enumerate items presented sequentially, one-by-one. Since the 10-month-olds 

in Feigenson et al.’s studies observed crackers being placed one-by-one into opaque buckets, you 

might then think that the reason why non-subitizable values failed to be approximately enumerated 

(and, thus, discriminated) is because approximate enumeration requires the simultaneous 

presentation of all the elements being enumerated (see Spelke 2003: 298 for a related suggestion).  

This simple suggestion might even seem well motivated. Wynn (1995) found that five-month-olds 

subitize small collections that are sequentially placed behind a screen. For when infants saw two 

objects get sequentially placed behind a screen, they looked longer when the screen was removed 

to reveal three objects rather than two, despite marked difficulties five-month-olds have 

performing 2:3 discriminations by approximately enumerating. However, in a similar study with 

older children, Chiang and Wynn (2000) found that when eight-month-olds saw five objects get 

sequentially placed behind a screen, in similar ways, they failed to approximately enumerate these 

and were, thus, no more surprised when the screen was removed to reveal five objects or none. 

Taken together, these findings might indicate that while infants can approximately enumerate 

collections containing >3 items, this requires that items be presented simultaneously rather than 

sequentially (see Hauser & Carey 2000 for related results in monkeys). 

Alas, matters are not so simple. Infants can approximately enumerate collections when items are 

presented one-by-one, and sequentially, at least under some conditions. In fact, we’ve already seen 

this. When Lipton and Spelke (2003) replicated Xu and Spelke’s (2000) results with six-month-

olds, performance was identical when infants enumerated sequences of heard tones as opposed to 

static collections of seen dots. Likewise, Wood and Spelke (2005) found that both six- and nine-

month-olds could approximately enumerate sequences of rabbit jumps, again with comparable 

levels of acuity to when approximately enumerating static collections. Infants also show a three-

item limit in subitizing tasks when items are presented concurrently (Starkey & Cooper Jr. 1980).  

This is not to deny that there might be something about the way collections are presented which 

determines whether infants approximately enumerate, and thus discriminate, these when set size 

is >3. Spelke (2022: 156) conjectures that this often has to do with the amount of time that items 

are presented for. Specifically, she proposes that while infants approximately enumerate 

collections quickly and in parallel, irrespective of whether items are presented sequentially or 

concurrently, subitizing requires that arrays be presented slowly enough that each item is 



selectively attended. As evidence, Spelke cites findings suggesting that when collections 

containing <3 items are presented briefly, precluding such focused attention, they are 

approximately enumerated and discriminated in accord with Weber’s Law (Starr et al. 2013; 

Libertus et al. 2014). 

The point to note is that even if this is so, it does not resolve The Big-Number Small-Number 

Problem. Suppose Spelke’s hypothesis about presentation times is correct: subitizing requires that 

individual items be selectively attended while approximate enumeration does not; and because 

selectively attending to individual items takes time, infants have no choice but to approximately 

enumerate small collections when presentation times are brief – subitizing is simply impossible 

under these conditions. Fine. The trouble is: While this might explain why infants would 

sometimes resort to approximately enumerating small collections, it does not explain why infants 

would not approximately enumerate collections containing >3 items they would otherwise subitize 

(e.g., in Feigenson et al.’s 2002). Think about it this way: If infants can flip from approximately 

enumerating items to subitizing them when set-size is small and items are presented for a sufficient 

duration that individual items can be selectively attended, why can’t they flip back to 

approximately enumerating larger collections when a set-size of 3 is exceeded and subitizing fails? 

Indeed, if Spelke’s hypothesis about presentation times is correct, this exacerbates matters. For if 

approximate enumeration is so easy that it operates quickly and without even requiring focused 

attention to enumerated individuals, it only looks more puzzling that this fast and efficient ability 

cannot save the day in subitizing tasks when a set-size of three is exceeded, especially when the 

items are presented simultaneously (Starkey & Cooper Jr. 1980).  

3. Mutual ‘Inhibition’ 

The preceding remarks introduce The Big-Number Small-Number Problem. Boldly stated, we 

want to know why infants fall to chance in subitizing tasks whenever one or more (non-empty) 

target collection contains >3 items, even when these collections differ by a ratio that should be 

easily discriminable via their well-known competence to approximately enumerate. What gives? 

Perhaps the most prominent answer appeals to some form of inhibition. Exemplifying this view, 

Spelke (2022) proposes that approximate enumeration and subitizing are subserved by distinct 

modules, in something like Fodor’s (1983) sense of the term: there is, thus, a modular approximate 

number system (ANS) and a distinct subitizing module, operating according to its own proprietary 



data structures and algorithms. But, drawing on work by Hyde and Wood, she adds that these 

systems are unlike sensory modules in that they are “mutually inhibitory” (2022: 170). So, while 

the ANS and subitizing systems are distinct and independent psychological systems, Spelke 

proposes that activation of the ANS or subitizing system inhibits the operations of the other. Such 

inhibition is then seen to defuse The Big-Number Small-Number Problem, providing an “account 

for all the puzzling findings” (169) under consideration.  

Unfortunately, Spelke says little to clarify what ‘inhibition’ amounts to in this context. Nor do 

other proponents of this general suggestion (Hyde 2011). For our purposes this won’t do. If we are 

to resolve The Problem in this way, ‘inhibition’ must amount to more than (e.g.) an illicit re-

labeling of the fact that the ANS fails to facilitate discriminations in subitizing contexts. With this 

in view, the present section will pose problems for two natural ways of fleshing out Spelke’s 

inhibitory hypothesis, thereby motivating my recommended alternative.  

3.1 Strong Inhibition 

While Spelke says little to clarify what ‘inhibition’ amounts to in this context, she sometimes seems 

to be tempted by a view which I call Strong Inhibition. On this view, activation of the subitizing 

system straightforwardly switches off the ANS. Hence, when infants are tasked with choosing 

between a four-cracker-collection and a one-cracker-collection they will be at chance if their 

subitizing system has already been activated, since their subitizing system cannot process the four-

cracker-collection (this exceeds its three-item limit) and activation of the subitizing system turns 

off the ANS – a system which could otherwise handle the 1:4 discrimination. Since similar points 

apply whenever one or both collections exceed a set-size limit of three, Strong Inhibition offers to 

defuse The Big-Number Small-Number Problem.  

Indicative that this is what Spelke sometimes has in mind, consider that her main line of evidence 

in support of her inhibitory hypothesis comes from Hyde and Wood (2011). Building on prior 

studies showing that collections can be approximately enumerated, even when positioned such that 

their individual constituents cannot be selectively attended (Intriligator & Cavanaugh 2001), and 

prior studies finding common set-size limitations in subitizing and object-based-attention tasks 

(Trick & Pylyshyn 1994), Hyde and Wood took EEG measures while adult subjects viewed small 

collections, containing 1-3 items, which either could or couldn’t be allocated selective attention. 

They found that when objects were sufficiently spaced and foveated, such that individual items 



could be allocated focused attention, EEG responses were observed that are standardly associated 

with subitizing. This was taken to suggest that such attentional deployment automatically elicited 

subitizing. Meanwhile, when individual objects could not be selectively attended, responses were 

comparable to those evoked in studies probing the neural underpinnings of the ANS. But crucially, 

when participants selectively attended to the individual objects, and evoked EEG responses 

associated with subitizing, Spelke (2022: 168) emphasizes that this was accompanied by “no 

detectable neural response to changes in number” of a sort one would expect if participants were 

engaging their ANS. It was as if attending to individual items, in a manner that automatically 

evoked subitizing, switched off their ANS, just as Strong Inhibition recommends. Indeed, the lead 

author of the cited study invites this interpretation, concluding that when subitizing is engaged 

“approximate number representations are not formed” (Hyde 2011: 4). 

Strong Inhibition might, therefore, seem to have a lot going for it. It offers to defuse The Big-

Number Small-Number Problem, and it does so in a manner that is supported by sophisticated 

neuroscientific results. Despite these virtues, I think Strong Inhibition untenable.  

If selectively attending to individuals, and subitizing them, literally switched off one’s ANS, as 

Strong Inhibition recommends, it should be impossible to approximately enumerate the total 

number of items populating an array when we selectively attend to a small number of individuals 

within this larger array and subitize them. But this is plainly not so.  

Consider Pylyshyn’s Multiple Object Tracking (MOT) paradigm. In standard MOT experiments, 

participants are presented with non-subitizable collections of items (e.g., 10 black dots). At the 

start of each trial, a subset of these is flagged as ‘targets’ to be tracked throughout the experiment 

– for instance, target dots might flash on the screen. Having stopped flashing, all the items in the 

array will begin moving in unpredictable ways for, say, 10secs. At this point, the items freeze, and 

participants are tasked with reidentifying targets highlighted at the start of the trial.  

A much-celebrated result is that adult humans typically succeed in tracking up to 3 or 4 targets in 

such tasks after which performance falls apart (Pylyshyn 2007). This has been widely noted to 

mirror the set-size limitations on subitizing (Scholl & Leslie 1999; Feigenson 2011; Spelke 2022). 

And sure enough: participants in these tasks have been found to spontaneously subitize and 

enumerate the items being tracked (Trick & Pylyshyn 1994). But if you try a MOT study for 

yourself, notice that when you track and/enumerate 3-4 target objects, through focused object-



based attention towards these, you are not left oblivious to the approximate number of items 

populating the entire array. In fact, you might feel that you can’t help but notice this. For instance, 

you might be unsure whether the collection contains precisely ten or precisely 12 dots but be 

confident that it doesn’t comprise 20.  

This is not mere conjecture. Available evidence indicates that when selective attention is allocated 

to individual items within a collection this actually improves ANS acuity. For instance, Cheyette 

and Piantadosi (2019) used an eye tracker to show that the more dots that participants could 

selectively fixate upon within a collection, the more accurately they could approximately 

enumerate the collection. So, when participants selectively attend to individuals within a 

collection, in ways that are seen to elicit subitizing (Trick & Pylyshyn 1994; Spelke 2022), this 

does not suppress their ability to approximately enumerate that very collection, as Strong 

Inhibition predicts – instead, it improves this.  

With these points in view, it is worth revisiting Hyde and Wood’s study, noting that in hindsight 

it did not test for the inhibition of the ANS by the subitizing system in any direct or obvious way. 

For a start, it employed a dubious, and much critiqued form of “reverse inference” (Poldrack 2006). 

For even if activation of the subitizing system and its underlying neural machinery was shown to 

inhibit neural machinery associated with the ANS (a point which may, itself, prove difficult to 

assess given well-known difficulties interpreting EEG results plus the fact that EEG only probes 

shallow layers of the brain, leaving much of the cortex unmapped [Grech et al. 2008; Srinivassan 

1999]), Hyde and Wood’s study did not test whether participants retained an ability to 

approximately enumerate collections when subitizing; e.g., by asking them to concurrently 

estimate or discriminate a collection of dots whilst subitizing was engaged. Of course, in the 

absence of contravening evidence, Hyde and Wood’s results might still motivate the thought that 

they would not (see: Machery 2014). But we have now seen that available behavioral results seem 

to trump this suggestion. Thus, I submit that Strong Inhibition should be rejected. It is 

undermotivated by the only studies that are seen to support it, and it is undermined by available 

evidence (at least in adult subjects, akin to those tested by Hyde and Wood).  

3.2 Weak Inhibition 

Strong Inhibition seems to be too strong. Nevertheless, one might embrace a modest version of the 

inhibitory hypothesis, which I call Weak Inhibition. Given Weak Inhibition, activation of the 



subitizing system does not straightforwardly switch off the ANS, but it reduces ANS acuity, 

causing performance to “suffer” (Spelke 2022: 169). In the tasks under consideration, this might 

prevent infants’ ANSs from facilitating discriminations we would otherwise expect them to. 

One problem with this proposal is that even Weak Inhibition is undermined by the above studies. 

For when adults deploy focused attention towards individuals within a collection, we have now 

seen that this improves ANS acuity, rather than reducing it (Cheyette & Piantadosi 2019). Insofar 

as such focused attention is seen to automatically elicit subitizing (as Spelke [2022: 169] and Hyde 

& Wood [2011] maintain), and the system is seen to work in broadly homologous ways across 

development (Carey, 2009; Clarke et al. 2025) this calls even Weak Inhibition into question. 

Bracketing these concerns, Weak Inhibition might find support in developmental studies. Recall 

Spelke’s suggestion that while the ANS operates rapidly (enumerating collections before focused 

attention can be paid to the individuals these comprise), subitizing often requires that items be 

observed for longer periods of time (such that focused attention can be paid to individual items 

within a collection). As evidence for this, Spelke notes that when small collections containing <3 

items are only presented briefly, they are often approximately enumerated, imprecisely and in 

accord with Weber’s Law, rather than being precisely subitized (Brannon 2002; Wood & Spelke 

2005). What she neglects to mention, is that when infants compare subitizable and non-subitizable 

quantities in these studies, the ratios between these collections must be larger for reliable 

discriminations to obtain. For instance, Cordes and Brannon (2009a; 2009b) found that when 

seven-month-olds approximately enumerated and proceeded to distinguish subitizable quantities 

from non-subitizable quantities, these quantities needed to differ by a ratio of 1:4, under conditions 

where the discrimination of two non-subitizable quantities otherwise required a mere 1:2 

difference. Prima facie, ANS acuity was (roughly) halved when discriminating collections that 

crossed the subitizing threshold, perhaps due to engagement of the subitizing system (Cordes & 

Brannon 2009a employed a habituation paradigm, effectively ensuring that collections were 

presented for prolonged periods, which should activate the subitizing system on Spelke’s 

hypothesis about presentation times).3 So, while activation of the subitizing system may not switch 

 
3 This might be a slight overstatement, since Cordes and Brannon did not test 1:3 discrimination across the subitizing 
threshold (e.g., 2:6). I’ll put this to one side since acknowledging this only worsens the problems for Weak Inhibition. 



the ANS off (pace Strong Inhibition), this suggests that ANS acuity is lowered when subitizable 

collections are involved and the subitizing system is engaged (ibid.).  

What’s crucial to note is that inhibition of this weakened sort no longer resolves The Big-Number 

Small-Number Problem. Since infants continue to consistently perform 1:4 discriminations across 

the subitizing threshold using their ANS, despite prolonged presentation times, it remains unclear 

why infants consistently failed to discriminate one cracker from four crackers in (e.g.) Feigenson 

and Carey (2005) by using their ANS. Indeed, this point is exacerbated when we consider that the 

infants in Feigenson’s studies were older (ten-months-old) and would, thus, be expected to 

discriminate harder ratios than the seven-month-olds tested in Cordes and Brannon’s (Libertus & 

Brannon 2010). While there might be other ways to flesh out Weak Inhibition, these problems 

motivate consideration of a fresh approach to resolving The Big-Number Small-Number Problem. 

4 An Independently Motivated Solution 

I have raised concerns with two formulations of the inhibitory hypothesis. I’ll now suggest that a 

neglected solution to The Big-Number Small-Number Problem presents itself when we avail 

ourselves of three independently motivated observations about the ANS and subitizing system that 

more-or-less all parties in this debate already accept. That:  

a) these systems’ outputs differ in format,  

b) these outputs compete for space in visual working memory, and  

c) there are cues of some sort which determine whether a small collection is discriminated by 

the subitizing system or the ANS.  

Let us consider these claims in turn. 

4.1 Format 

In discussions of number cognition, it is just about universally expected that approximate number 

representations are couched in an analog format. In saying this, we needn’t assume that these 

representations are continuous (Beck 2015; c.f. Gallistel & Gelman 2000), nor that they conform 

to Kosslyn’s (1980) “picture principle” (Clarke 2022; c.f. Carey 2009). What’s crucial is that 

number is represented by a magnitude in the head (Peacocke 2019), which functions to mirror the 

quantities being represented, and does so by varying as a monotonic function of these (Maley 2011; 

Beck 2015). To conceptualize this, approximate number representations can be thought of as akin 



to the analog representations found in mercury thermometers which represent temperatures by 

having mercury levels vary as a monotonic function of these (i.e. having mercury levels serve as 

analogs of their content). 

Beyond the fact that this analog format is evinced by our best neuroscience (Roitman et al. 2007; 

Nieder 2016), a key motivation for positing analog representations of this sort, has been the 

observation that if the ANS’s representations are couched in an analog format, this could explain 

the ANS’s conformity to Weber’s Law given how noise naturally accumulates in analog systems 

(Meck & Church 1983).  

To illustrate, imagine keeping count of the goals scored at a football match by pouring one cup of 

water into a bucket A whenever team A scores a goal and a separate cup of water into a bucket B 

whenever team B does. Under these conditions, you might expect that the bucket with the most 

water at the end of the game will correspond to that of the winning team. However, if each cupful 

being poured varies in volume, then this noise could lead to systematic “errors” of a sort that would 

conform to Weber’s Law. For instance, if each cupful poured into bucket A contains 200ml of 

water and each cupful poured into bucket B contains 300ml of water, then the bucket with the most 

water will reliably correspond to that of the winning team just in case the winners win by 2 goals 

to 1, but not by 3 goals to 4, irrespective of the absolute numbers of goals involved. More generally: 

accuracy will now be predicted by the ratio between the numbers of goals scored. Since noise of 

some analogous sort is more or less inevitable in real-world analog systems, like those 

implemented in the brain, a prevailing orthodoxy has been that Weber’s Law results from the 

analog format of the representations underwriting ANS performance plus the inevitable patterns 

of noise that arise in the brain’s construction of its sensory representations (Beck 2019; Beck & 

Clarke forthcoming).  

What’s crucial here is that this should compel us to hold that subitizing encodes numerical 

information in a different format entirely. For if one holds that the format of ANS representations 

implies the ANS’s conformity to Weber’s Law, then the fact that subitizing does not conform to 

Weber’s Law implies that its representations must somehow differ in how they make numerical 

information “explicit” and “accessible” (Marr 1980: 20-22). For instance, if the subitizing system 

represents small numbers precisely (Margolis 2020), one might conjecture that these are couched 

in a non-analog digital format – e.g., that these are digital symbols, ONE TWO and THREE, in 



the language of thought (Quilty-Dunn et al. 2023). Alternatively, one might deny that subitizing 

involves the explicit representation of numerical content and instead hold that the discriminations 

performed in subitizing tasks result from numerical information that is merely implicit in the 

number of individuals explicitly represented (Feigenson et al. 2004). Either way: Subitizing 

representations cannot encode numerical information in the same format as approximate number 

representations if approximate number representations have a format which implies the ANS’s 

conformity to Weber’s Law. This is for the simple, and uncontroversial, reason that subitizing does 

not conform to Weber’s Law. Thus, I draw Interim Conclusion 1 – ANS and subitizing 

representations encode numerical information in different formats. 

4.2 No Comparison Without Translation 

While Interim Conclusion 1 is relatively uncontroversial, not least among those engaged with The 

Big-Number Small-Number Problem (Feigenson et al. 2004; Spelke 2022; Carey 2009; Brannon 

2002), it suggests that the numerical information that the ANS and subitizing systems encode 

cannot be directly compared without some intervening process of translation. Just as one will not 

be able to identify which of two symbols represents a larger number if one number is represented 

using a system of tally marks and the other using Arabic numerals, unless one possesses the 

knowledge or ability to translate these into a common code, the numerical information that ANS 

and subitizing representations carry will be incomparable without some capacity to translate this 

information into a common format. This is particularly clear if – as is often assumed – 

computations over these representations must ultimately be sensitive to their syntactic, or non-

semantic properties (Fodor 1979). Thus, I proceed to draw Interim Conclusion 2 – If [Interim 

Conclusion 1] is accepted, then the contents of ANS and subitizing representations cannot be 

contrasted without an intervening process of translation. 

4.3 Resolving The Problem 

Once again, Interim Conclusion 2 is largely uncontroversial (see Butterfill & Sinigaglia [2014] 

and the literature it spawned). Nevertheless, it has underexplored implications for The Big-Number 

Small-Number Problem. For insofar as the numerical information encoded by the ANS and the 

subitizing system differs in format (Interim Conclusion 1), we can now see that an infant in 

Feigenson et al.’s studies will not be able to directly compare the quantities associated with their 

representation of a four-cracker collection and their representation of a one cracker collection if 



the former has been represented by their ANS in one format and the latter representation has been 

encoded by their subitizing system in another – at least not without an extraneous process of 

translation between these representations (Interim Conclusion 2) which we currently have little 

reason to think infants possess.4 Indeed, similar points will apply no matter what these 

representations represent (compare Feigenson et al. 2004; Margolis 2020; Clarke & Beck 2021), 

and hence no matter the ratio between their contents. 

This does not quite resolve The Big-Number Small-Number Problem, however. The preceding 

points allow us to see why an approximate number representation of FOUR (or FOURISH) and a 

subitizing representation of a one item collection will be incomparable for infants in Feigenson et 

al.’s studies. Nevertheless, an appeal to the diverging formats of approximate enumeration and 

subitizing does not explain why infants would systematically fail to discriminate four crackers 

from one cracker in Feigenson’s experiments. This is because it does not yet explain why an infant 

in such studies wouldn’t construct approximate number representations of both quantities – ONE 

(or ONEISH) and FOUR (or FOURISH), respectively – in a common ANS format and then 

proceed to compare these. After all, we’ve seen that small collections can be approximately 

enumerated (e.g., Brannon 2002; Cordes & Brannon 2009a; 2009b).  

Fortunately, a solution to The Problem presents itself when the preceding remarks are considered 

in tandem with two final observations:  

Firstly, utilizing ANS and subitizing representations requires working memory. No one doubts this 

– i.e., that there are limits on the amount of visual information that can be stored and accessed by 

an infant at a given time for use in their reasoning or action guidance. What’s notable is that, as a 

matter of empirical fact, current research indicates that infants are limited to holding no more than 

~3 objects/collections in working memory across a range of tasks that are relevant to our concerns 

in this essay.5 For instance, infants typically only succeed in tracking and retaining information 

 
4 This contrasts with adults, who plausibly overcome The Big-Number Small-Number Problem by mapping the outputs 
of subitizing (Trick & Pylyshyn 1994) and approximate enumeration (Sullivan & Barner 2013) onto lexical number 
concepts, couched in a common format, apt for immediate comparison (see Spelke 2003 for a related conjecture). 
5 There are different views on the architecture of working memory. Some regard it as a horizontal faculty, such that 
(e.g.) verbally encoded information and visually encoded information compete for space within a single finite resource 
(Atkinson & Shiffrin 1968). Others argue for the functional independence of (e.g.) visual and verbal working memory, 
holding that each type of working memory stores content in an independent memory store (Shah & Miyake 1996). 
Still others endorse the functional independence of the memory stores associated with (e.g.) visual and verbal working 
memory but hold that memory storage within either store is constrained by domain general resources, common to 
visual and verbal cognition (Baddeley 2000; Kane et al. 2004). I take no stand on these matters. What’s important for 



about ≤3 Spelke objects at any given time (Feigenson & Carey 2003). Likewise, in approximate 

enumeration and subitizing tasks infants can only compare information about ≤3 collections 

simultaneously, after which performance sharply declines. For instance, Zosh et al. (2011) found 

that infants detect changes in number that pertain to either one of two observed subsets or the 

superset they comprise, but they lose track of this when more than two subsets plus a superset must 

be tracked simultaneously. Moher and Feigenson (2011) extended these results, showing that this 

three-set-limit remains constant, irrespective of whether the subsets of a collection are demarcated 

by color or shape. Meanwhile, Halberda et al. (2006) found related capacity limits in adults, with 

related results observed in the subitizing literature. For instance, Feigenson and Halberda (2004) 

showed that infants can exceed the 3item set-size limit on subitizing when collections are easily 

chunked into less than 3 subitizable sets (e.g., such that a collection of four could be represented 

as two collections of two). 

In each of these cases, the representations involved seem to possess an object-attribute structure 

(Clarke 2023). Each representation is complex, picking out an individual (be it an isolated Spelke 

object, as in classic work on object files [Green & Quilty-Dunn 2021], or a collection apt to be 

subitized or approximately enumerated in the studies under consideration [Feigenson 2011]) such 

that information in various formats can then be attributed to these individuals (be it information 

about the kind of object being referenced, the individuals it comprises, or the approximate number 

of items that it contains – ibid.). Beyond the fact that this complex object-attribute structure allows 

that distinct types of information be bound and updated with respect to a single individual (e.g., 

average dot size and/or approximate number), indicating that the collection is not defined for the 

visual system by any of these specific attributes (Clarke 2023; compare Pylyshyn 2003), this is 

motivated by the three-item limit described above. For this pertains (most immediately) to the 

number of objects/collections that can be visually referenced at a given moment. Thus, it is as if 

there are just three slots available in infants’ visual working memory, and each slot is clogged up 

whenever the infant thinks about an item – be it a Spelke object, a subitizable collection, or an 

approximately enumerable ensemble (Feigenson et al. 2011) – irrespective of what information (if 

 
my argument is simply that subitized visual information competes with approximately enumerated visual content for 
space within a single finite memory store. All the abovementioned views predict this. 



any) is then attributed to this individual. Thus, I draw: Interim Conclusion 3 – Infants can hold 

information about no more than three collections in working memory at once. 

This does quite resolve The Big-Number Small-Number Problem. Consider the case in which an 

infant who discriminates two crackers from three crackers, falls to chance discriminating a one-

cracker collection from a four-cracker collection. As noted, this is puzzling. For even if the 

subitizing system is unable to attribute the relevant numerical information to the four item 

collection (because the infant subitizing system has a three-item limit on collections it can quantify 

or process), it remains unclear why infants could not use their ANS to perform the comparison, 

producing a representation of approximately one cracker for one collection which is then easily 

discriminated from an approximate number representation of four(ish) crackers in the other – after 

all, 1:4 is miles from 1:1. 

The point to note is that, given Interim Conclusion 3, there simply will not be space for infants to 

simultaneously encode (i) an approximate number representation of the one-cracker collection, (ii) 

an approximate number representation of the four-cracker collection, (iii) a subitizing 

representation that refers to the one-cracker collection, and (iv) a subitizing representation that 

refers to the four-cracker collection. Only three of these four representations will be able to fit into 

the available slots that infant visual working memory provides. But which three? 

At this point, it is worth reminding ourselves that there simply must be cues which reliably 

determine whether small collections are discriminated using the ANS or subitizing system. 

Without these it would be hard to see why infants consistently subitize in Feigenson et al.’s tasks, 

and why they consistently approximately enumerate otherwise similar collections in studies 

conducted by the likes of Cordes and Brannon.  

Admittedly, we do not have a clear understanding of what these cues are. Nevertheless, plausible 

proposals have been advanced. For instance, Spelke thinks this often has to do with presentation 

times: when collections/items are presented briefly, infants will tend to approximately enumerate 

these in accord with Weber’s Law (and thus discriminate one item from four, just as reliably as 

they discriminate two items from eight). Meanwhile, she thinks longer presentation times dispose 

infants to subitize the collections (hence why they fail to discriminate collections that exceed the 

subitizing threshold under these conditions, as when they fail to discriminate one item from four 

[Feigenson & Carey 2005]).  



Admittedly, Spelke’s appeal to presentation times can’t be the whole story. For a start, it doesn’t 

explain why infants sometimes approximately enumerate small quantities in habituation studies 

(such as those employed by Cordes & Brannon 2009a) which typically involve longer presentation 

times than the subitizing studies run by Feigenson and colleagues (S. Cordes pers. comm.). It also 

doesn’t explain why Cordes and Brannon consistently found that ratios need to be significantly 

larger (e.g., 1:4 rather than 1:2) for seven-month-olds to discriminate collection sizes that cross 

the subitizing threshold (but see Section 3.2) – a point which leads Cordes and Brannon (2009a) 

to suppose that ratio size may be a further cue that disposes approximate enumeration over 

subitizing in the tasks under consideration. In any case, it’s important to stress that whatever cues 

end up determining performance in these studies, they need not be construed as cues which 

determine which system is activated in each context and which is switched off (pace Strong 

Inhibition). Instead, these cues can be construed as determining which systems’ representations 

are prioritized in the three slots that infant working memory provides. Thus, when items are 

presented slowly, or in ways which otherwise dispose collections to be subitized, we might suppose 

that subitizing representations are just preferentially encoded into working memory over 

approximate number representations of the same collections. This does not require us to posit any 

further sense in which the ANS and subitizing systems suppress or inhibit one another’s operations. 

This is a welcome result, I think, since alternatives run afoul of the concerns glossed in Section 3.   

To see how this offers to resolve The Big-Number Small-Number Problem, consider Feigenson et 

al.’s cracker experiments one last time: In these studies, infants’ subitizing systems will have tried 

to represent the collections and, due to the ways in which the items were presented, these will have 

been preferentially encoded into two of three available slots that infant working memory provides. 

Thus, when infants observed two crackers being placed into one bucket and three crackers being 

placed into the other, a subitizing representation of the two-cracker collection and a subitizing 

representation of the three-cracker collection will have been stored in working memory, occupying 

two of the three available slots therein. Since both collections contain a subitizable quantity of 

items, this enabled the infants to then discriminate the collections and to reliably choose the three-

cracker collection over the two-cracker collection.  

By contrast, consider a situation in which infants observed one cracker being placed into one 

bucket and four crackers into the other. Here, they would fail to discriminate these quantities. 

Provided that these collections were presented in analogous ways, the subitizing system would still 



try to represent the collections and these representations would still be preferentially encoded into 

working memory. These subitizing representations would, thus, continue to occupy two of three 

available slots therein. However, in this case, the subitizing system would be unable to attribute 

the information that is required to encode the quantity associated with the four-cracker collection 

(four-crackers exceeds its three-item limit). Thus, these representations would not enable a 1:4 

discrimination. But while the ANS might have stepped in to facilitate this discrimination (given 

the large ratio size), the prioritization of subitized content in two of the three available working 

memory slots would only leave one additional slot available. So, even if this remaining slot 

allowed for an approximate number representation of the otherwise in-discriminable four-cracker 

collection to be encoded and utilized by the infants, this single representation would not suffice to 

facilitate a comparison among the collections if its numerical content were couched in a distinct 

format; at least not without some intervening means of translating between these diverging formats 

(Interim Conclusions 1 & 2).  

Since similar points apply to all the problem cases under consideration – including cases in which 

infants must discriminate between a three-cracker collection and a four cracker collection, a two-

cracker collection and a four cracker collection, or a three-cracker collection and a six cracker 

collection – I propose that The Big-Number Small-Number Problem is resolved when we 

recognize that (i) the ANS and subitizing systems encode numerical information in different 

formats, that (ii) their representational outputs compete for space in working memory, and that (iii) 

there are cues determining whether discriminations are facilitated by the ANS or subitizing 

systems in the tasks under consideration, at least once (iii) is interpreted as a claim about what 

information is prioritized in working memory.  

4.4 An Objection 

One worry with my proposal might be that it requires us to hold that when a >3 item collection is 

presented in ways that cue subitizing representations to be preferentially encoded in working 

memory, a representation of the >3 item collection will somehow remain stored and prioritized in 

working memory (clogging up one of the available slots) over and above usable approximate 

number representations of the same collection. This might sound bizarre, if one assumes that the 

subitizing system stops representing the collection entirely whenever that collection exceeds the 

subitizing threshold. For on this view, there will be no such thing as an infant’s subitizing 



representation which represents a four-item collection. When the subitizing threshold of three is 

crossed, the representation simply ceases to exist.   

This cannot be the right way to think about subitizing, however. If a subitizing representation that 

refers to a four-cracker collection was not held in working memory at all, infants would reliably 

select buckets containing one cracker over buckets containing four. Why? Because the subitizing 

system would represent the one cracker bucket as containing one cracker while failing to represent 

the four-cracker collection at all. But, as we’ve seen, this prediction is not borne out (Feigenson 

& Carey 2005). Infants are at chance choosing between subitized collections of one and four.  

You might wonder why this would this be. What would cause infants to be at chance choosing 

between collections of one and four in these studies? The answer, I suggest, stems from my 

suggestion that both subitizing and ANS representations have an object-attribute structure. Like 

object-files, they pick out perceptual objects – in this case, sets or collections rather than Spelke 

objects – before allowing syntactically independent symbols or representations (carrying 

numerical information) to then be attributed to these (either explicitly [Margolis 2020; Clarke & 

Beck 2021] or implicitly in the number of individuals these sets are represented as containing 

[Feigenson et al. 2004]). But since the structure of these representations is complex, and the three 

available slots in infant visual working memory is clogged up by the elements of these 

representations which pick out objects (the sets or collections) rather than the information that is 

then attributed to these, we should expect a subitizing representation to continue to consume a slot 

in visual working memory when the subitizing threshold is exceeded. Why? Because, under these 

conditions, there will still be an object (collection) being referred to; it’s just that the subitizing 

system will not be able to attribute the relevant numerical information to this object. In this way, 

the element that is stored in working memory will effectively say “there is a collection there” but 

no quantitative information is attributed to it. So, when this gets compared to a separate subitizing 

representation which says “there is a collection there and it contains one item” these 

representations will underdetermine which collection contains more. By contrast, when a desirable 

four-item collection is picked out by an object-specifying element which says “there is a collection 

there” this collection will be chosen preferentially over an empty set, which infants have no reason 

to have ever treated as collection-involving to begin with. Consistent with this prediction, 

Feigenson and Carey (2005) found that while 10month-olds fail to perform 1:4 discriminations in 



subitizing tasks, they reliably perform 0:4 discriminations under comparable conditions, readily 

choosing a four-cracker collection over a bucket that is left empty.  

5 Future Directions 

This paper has introduced and clarified The Big-Number Small-Number Problem before 

recommending a novel solution to it. My solution is simple in that it turns on independently 

motivated claims that are already accepted by most parties in these debates. The basic idea is that, 

given the limited number of slots that are available in infants’ visual working memory there will 

not be space to encode two approximate number representations (pertaining to collections in and 

outside the subitizing range) if visual cues lead the visual system to preferentially encode two 

subitizing representations in working memory – this would require four slots, where infant 

working memory merely provides three. And while the storage of two prioritized subitizing 

representations might leave one slot free for an ANS representation to squeeze in, this won’t 

facilitate a content-respecting comparison with the contents of subitizing representations stored in 

working memory if these are couched in different formats, since content-respecting comparisons 

across formats require some (prima facie lacking) mechanism of translation.  

This conjecture is at the mercy of empirical fortune. Since my hypothesis predicts that ANS and 

subitizing representations compete for space in working memory, it predicts when 1:4, 2:4 or 3:6 

discriminations will be possible for infants. For instance: It predicts that since ANS and subitizing 

representations compete for space in working memory, subitizing and ANS tasks can be pursued 

in tandem, provided that no more than three collections are considered at once. Thus, an infant will 

not discriminate a subitized collection of one from a subitized collection of two while prioritizing 

two approximately enumerated collections, but they might approximately enumerate a single large 

collection while simultaneously comparing two subitizable values. 

There are also philosophical upshots of my proposal. I’ve argued that subitizing and ANS 

representations have a complex object-attribute structure, akin to an object file (Green & Quilty-

Dunn 2021). My conjecture thereby builds upon recent philosophical work exploring the 

compositional structure of perceptual representations (Lande 2021) and representations with an 

analogue format (Clarke 2023; Lande 2024). What’s distinctive is that, here, the objects picked 

out are sets or collections, rather than bounded “middle-sized dry goods”.  



On the conjecture advanced, there then needs to be an architectural, syntactic or semantic 

difference between the representations of collections picked out through subitizing and the 

representations of collections apt for approximate enumeration. This is because, on my account, 

the object-specifying element involved in a subitizing representation cannot have approximate 

number content freely attributed to it once the subitizing threshold is exceeded – something must 

prevent this, suggesting that the referential elements involved in subitizing and approximate 

enumeration somehow differ in kind (see Feigenson 2011).  

No less importantly, however, the object-specifying referential elements in these representations, 

cannot be entirely devoid of content or significance for the infants who deploy them. Thus, unlike 

the sub-representational fingers of instantiation (FINSTs) that Pylyshyn and others posit to explain 

performance in MOT paradigms – symbols which are said to function as bare demonstratives, 

lacking content or accuracy conditions entirely (c.f. Echeverri 2017) – the set-representing 

elements of subitizing representations enable infants to appreciate that it is a set or collection being 

picked out, which may or may not contain more items than a separate collection of one or two or 

three. For as we saw in Section 4.4, this is what prevents infants from reliably choosing subitizable 

collections (e.g., of 1) over non-subitizable collections (e.g., of 4) in Feigenson’s tasks, and instead 

leaves them at chance when choosing between one cracker and four. At the same time, it enables 

infants to systematically choose non-subitizable collections (e.g. of four) over empty sets (e.g., an 

empty bucket – see Section 4.4). So, beyond the fact that a complete account of perceptual structure 

may need to recognize that distinct symbols are employed when sustaining visual reference 

towards Spelke objects, subitizable sets and approximately enumerable collections (Feigenson 

2011), my solution to The Big-Number Small-Number Problem suggests that these symbols need 

to be richer in content or semantic significance than purely demonstrative accounts of visual 

reference assume (e.g., Pylyshyn 2003). 

(Main text, inc. footnotes and in-text references: 8,687 words) 
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Figure 1. Based on a quick glance, can you tell whether panel A or panel B contains more 

squares? What about panels B and C? 

 
Figure 2. Feigenson et al. (2004) present the results of numerous subitizing tasks in which 
infants fall to chance when discriminating (non-empty) collections that contain >3 items. 

 


